In the past, when I've needed array-like indexical lookups in a tight loop, I usually use tuples, since they seem to be generally extremely performant (close to using just n-number of variables). However, I decided to question that assumption today and came up with some surprising results:
In [102]: l = range(1000)
In [103]: t = tuple(range(1000))
In [107]: timeit(lambda : l[500], number = 10000000)
Out[107]: 2.465047836303711
In [108]: timeit(lambda : t[500], number = 10000000)
Out[108]: 2.8896381855010986
Tuple lookups appear to take 17% longer than list lookups! Repeated experimentation gave similar results. Disassembling each, I found them to both be:
In [101]: dis.dis(lambda : l[5])
1 0 LOAD_GLOBAL 0 (l)
3 LOAD_CONST 1 (5)
6 BINARY_SUBSCR
7 RETURN_VALUE
For reference, a typical 10,000,000 global variable lookup/returns take 2.2s. Also, I ran it without the lambdas, y'know, just in case (note that number=100,000,000 rather than 10,000,000).
In [126]: timeit('t[500]', 't=range(1000)', number=100000000)
Out[126]: 6.972800970077515
In [127]: timeit('t[500]', 't=tuple(range(1000))', number=100000000)
Out[127]: 9.411366939544678
Here, the tuple lookup take 35% longer. What's going on here? For very tight loops, this actually seems like a significant discrepancy. What could be causing this?
Note that for decomposition into variable (e.g. x,y=t), tuples are slightly faster (~6% in my few tests less time) and for construction from a fixed number of arguments, tuples are crazy faster(~83% less time). Don't take these results as general rules; I just performed a few minitests that are going to be meaningless for most projects.
In [169]: print(sys.version)
2.7.1 (r271:86882M, Nov 30 2010, 09:39:13)
[GCC 4.0.1 (Apple Inc. build 5494)]
Tuples are primarily faster for constructing lists, not for accessing them.
Tuples should be slightly faster to access: they require one less indirection. However, I believe the main benefit is that they don't require a second allocation when constructing the list.
The reason lists are slightly faster for lookups is because the Python engine has a special optimization for it:
case BINARY_SUBSCR:
w = POP();
v = TOP();
if (PyList_CheckExact(v) && PyInt_CheckExact(w)) {
/* INLINE: list[int] */
Py_ssize_t i = PyInt_AsSsize_t(w);
if (i < 0)
i += PyList_GET_SIZE(v);
if (i >= 0 && i < PyList_GET_SIZE(v)) {
x = PyList_GET_ITEM(v, i);
Py_INCREF(x);
}
With this optimization commented out, tuples are very slightly faster than lists (by about 4%).
Note that adding a separate special-case optimization for tuples here isn't necessary a good idea. Every special case like this in the main body of the VM loop increases the code size, which decreases cache consistency, and it means every other type of lookup requires an extra branch.
Contrary to this, I have completely different advice.
If the data is -- by the nature of the problem -- fixed in length, use a tuple.
Examples:
( r, g, b ) - three elements, fixed by the definition of the problem.
( latitude, longitude ) - two elements, fixed by the problem definition
If the data is -- by the nature of the problem -- variable, use a list.
Speed is not the issue.
Meaning should be the only consideration.
Related
For input values, i. e. x, y, z, n, I wanted to print all combinations as list comprehesion, where 0<=i<=x, 0<=j<=y, 0<=k<=z, where i+j+k != n.
How to do this? I was thinking about using itertools.permutations() but I don't know how. How to input these x, y, z, n in appropriate format?
Using itertools.product to get the cartesian product of all the ranges:
[triple for triple in itertools.product(range(x+1), range(y+1), range(z+1)) if sum(triple) != n]
[(i,j,k) for i in range(x+1) for j in range(y+1) for k in range(z+1) if i+j+k!=n]
Some timeit consideration. With x=10, y=8, z=6, n=10
This method (let's call it "triple for method") : 3.27 (sec for 50000 runs on my machine)
Barmar's method ("product/sum method) : 3.56
So, we all loose, since the best method (so far) is a compromise between those 2:
# Fastest so far
[(i,j,k) for i,j,k in itertools.product(range(x+1),range(y+1),range(z+1)) if i+j+k!=n]
So, the main idea is Barmar's one (using itertools.product). What makes their solution slower, is just the call to "sum", I think. Not that it is expansive, but compared to i+j+k...
So this 3rd solution avoid the triple for (well, not really. under the hood ".product" also have this triple for. But the difference is that my triple for is in interpreted python, while itertools.product is probably in compiled C code), and also avoid the call to sum. To the cost of handling 3 variables, but apparently it worth it. Timeit:
itertools/i+j+k method: 2.94
Generally speaking, for strictly identical task, one should favor itertools, because it is faster than real python for loops (well, compound list are not really for loops neither. But, still).
In this case, since computation is very fast anyway, a usually negligible difference (sum vs +) was sufficient to reverse the ranking. But we can get rid of it
Closed. This question is opinion-based. It is not currently accepting answers.
Closed 4 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Python has a built in function sum, which is effectively equivalent to:
def sum2(iterable, start=0):
return start + reduce(operator.add, iterable)
for all types of parameters except strings. It works for numbers and lists, for example:
sum([1,2,3], 0) = sum2([1,2,3],0) = 6 #Note: 0 is the default value for start, but I include it for clarity
sum({888:1}, 0) = sum2({888:1},0) = 888
Why were strings specially left out?
sum( ['foo','bar'], '') # TypeError: sum() can't sum strings [use ''.join(seq) instead]
sum2(['foo','bar'], '') = 'foobar'
I seem to remember discussions in the Python list for the reason, so an explanation or a link to a thread explaining it would be fine.
Edit: I am aware that the standard way is to do "".join. My question is why the option of using sum for strings was banned, and no banning was there for, say, lists.
Edit 2: Although I believe this is not needed given all the good answers I got, the question is: Why does sum work on an iterable containing numbers or an iterable containing lists but not an iterable containing strings?
Python tries to discourage you from "summing" strings. You're supposed to join them:
"".join(list_of_strings)
It's a lot faster, and uses much less memory.
A quick benchmark:
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = reduce(operator.add, strings)'
100 loops, best of 3: 8.46 msec per loop
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = "".join(strings)'
1000 loops, best of 3: 296 usec per loop
Edit (to answer OP's edit): As to why strings were apparently "singled out", I believe it's simply a matter of optimizing for a common case, as well as of enforcing best practice: you can join strings much faster with ''.join, so explicitly forbidding strings on sum will point this out to newbies.
BTW, this restriction has been in place "forever", i.e., since the sum was added as a built-in function (rev. 32347)
You can in fact use sum(..) to concatenate strings, if you use the appropriate starting object! Of course, if you go this far you have already understood enough to use "".join(..) anyway..
>>> class ZeroObject(object):
... def __add__(self, other):
... return other
...
>>> sum(["hi", "there"], ZeroObject())
'hithere'
Here's the source: http://svn.python.org/view/python/trunk/Python/bltinmodule.c?revision=81029&view=markup
In the builtin_sum function we have this bit of code:
/* reject string values for 'start' parameter */
if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
PyErr_SetString(PyExc_TypeError,
"sum() can't sum strings [use ''.join(seq) instead]");
Py_DECREF(iter);
return NULL;
}
Py_INCREF(result);
}
So.. that's your answer.
It's explicitly checked in the code and rejected.
From the docs:
The preferred, fast way to concatenate a
sequence of strings is by calling
''.join(sequence).
By making sum refuse to operate on strings, Python has encouraged you to use the correct method.
Short answer: Efficiency.
Long answer: The sum function has to create an object for each partial sum.
Assume that the amount of time required to create an object is directly proportional to the size of its data. Let N denote the number of elements in the sequence to sum.
doubles are always the same size, which makes sum's running time O(1)×N = O(N).
int (formerly known as long) is arbitary-length. Let M denote the absolute value of the largest sequence element. Then sum's worst-case running time is lg(M) + lg(2M) + lg(3M) + ... + lg(NM) = N×lg(M) + lg(N!) = O(N log N).
For str (where M = the length of the longest string), the worst-case running time is M + 2M + 3M + ... + NM = M×(1 + 2 + ... + N) = O(N²).
Thus, summing strings would be much slower than summing numbers.
str.join does not allocate any intermediate objects. It preallocates a buffer large enough to hold the joined strings, and copies the string data. It runs in O(N) time, much faster than sum.
The Reason Why
#dan04 has an excellent explanation for the costs of using sum on large lists of strings.
The missing piece as to why str is not allowed for sum is that many, many people were trying to use sum for strings, and not many use sum for lists and tuples and other O(n**2) data structures. The trap is that sum works just fine for short lists of strings, but then gets put in production where the lists can be huge, and the performance slows to a crawl. This was such a common trap that the decision was made to ignore duck-typing in this instance, and not allow strings to be used with sum.
Edit: Moved the parts about immutability to history.
Basically, its a question of preallocation. When you use a statement such as
sum(["a", "b", "c", ..., ])
and expect it to work similar to a reduce statement, the code generated looks something like
v1 = "" + "a" # must allocate v1 and set its size to len("") + len("a")
v2 = v1 + "b" # must allocate v2 and set its size to len("a") + len("b")
...
res = v10000 + "$" # must allocate res and set its size to len(v9999) + len("$")
In each of these steps a new string is created, which for one might give some copying overhead as the strings are getting longer and longer. But that’s maybe not the point here. What’s more important, is that every new string on each line must be allocated to it’s specific size (which. I don’t know it it must allocate in every iteration of the reduce statement, there might be some obvious heuristics to use and Python might allocate a bit more here and there for reuse – but at several points the new string will be large enough that this won’t help anymore and Python must allocate again, which is rather expensive.
A dedicated method like join, however has the job to figure out the real size of the string before it starts and would therefore in theory only allocate once, at the beginning and then just fill that new string, which is much cheaper than the other solution.
I dont know why, but this works!
import operator
def sum_of_strings(list_of_strings):
return reduce(operator.add, list_of_strings)
Closed. This question is opinion-based. It is not currently accepting answers.
Closed 4 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Python has a built in function sum, which is effectively equivalent to:
def sum2(iterable, start=0):
return start + reduce(operator.add, iterable)
for all types of parameters except strings. It works for numbers and lists, for example:
sum([1,2,3], 0) = sum2([1,2,3],0) = 6 #Note: 0 is the default value for start, but I include it for clarity
sum({888:1}, 0) = sum2({888:1},0) = 888
Why were strings specially left out?
sum( ['foo','bar'], '') # TypeError: sum() can't sum strings [use ''.join(seq) instead]
sum2(['foo','bar'], '') = 'foobar'
I seem to remember discussions in the Python list for the reason, so an explanation or a link to a thread explaining it would be fine.
Edit: I am aware that the standard way is to do "".join. My question is why the option of using sum for strings was banned, and no banning was there for, say, lists.
Edit 2: Although I believe this is not needed given all the good answers I got, the question is: Why does sum work on an iterable containing numbers or an iterable containing lists but not an iterable containing strings?
Python tries to discourage you from "summing" strings. You're supposed to join them:
"".join(list_of_strings)
It's a lot faster, and uses much less memory.
A quick benchmark:
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = reduce(operator.add, strings)'
100 loops, best of 3: 8.46 msec per loop
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = "".join(strings)'
1000 loops, best of 3: 296 usec per loop
Edit (to answer OP's edit): As to why strings were apparently "singled out", I believe it's simply a matter of optimizing for a common case, as well as of enforcing best practice: you can join strings much faster with ''.join, so explicitly forbidding strings on sum will point this out to newbies.
BTW, this restriction has been in place "forever", i.e., since the sum was added as a built-in function (rev. 32347)
You can in fact use sum(..) to concatenate strings, if you use the appropriate starting object! Of course, if you go this far you have already understood enough to use "".join(..) anyway..
>>> class ZeroObject(object):
... def __add__(self, other):
... return other
...
>>> sum(["hi", "there"], ZeroObject())
'hithere'
Here's the source: http://svn.python.org/view/python/trunk/Python/bltinmodule.c?revision=81029&view=markup
In the builtin_sum function we have this bit of code:
/* reject string values for 'start' parameter */
if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
PyErr_SetString(PyExc_TypeError,
"sum() can't sum strings [use ''.join(seq) instead]");
Py_DECREF(iter);
return NULL;
}
Py_INCREF(result);
}
So.. that's your answer.
It's explicitly checked in the code and rejected.
From the docs:
The preferred, fast way to concatenate a
sequence of strings is by calling
''.join(sequence).
By making sum refuse to operate on strings, Python has encouraged you to use the correct method.
Short answer: Efficiency.
Long answer: The sum function has to create an object for each partial sum.
Assume that the amount of time required to create an object is directly proportional to the size of its data. Let N denote the number of elements in the sequence to sum.
doubles are always the same size, which makes sum's running time O(1)×N = O(N).
int (formerly known as long) is arbitary-length. Let M denote the absolute value of the largest sequence element. Then sum's worst-case running time is lg(M) + lg(2M) + lg(3M) + ... + lg(NM) = N×lg(M) + lg(N!) = O(N log N).
For str (where M = the length of the longest string), the worst-case running time is M + 2M + 3M + ... + NM = M×(1 + 2 + ... + N) = O(N²).
Thus, summing strings would be much slower than summing numbers.
str.join does not allocate any intermediate objects. It preallocates a buffer large enough to hold the joined strings, and copies the string data. It runs in O(N) time, much faster than sum.
The Reason Why
#dan04 has an excellent explanation for the costs of using sum on large lists of strings.
The missing piece as to why str is not allowed for sum is that many, many people were trying to use sum for strings, and not many use sum for lists and tuples and other O(n**2) data structures. The trap is that sum works just fine for short lists of strings, but then gets put in production where the lists can be huge, and the performance slows to a crawl. This was such a common trap that the decision was made to ignore duck-typing in this instance, and not allow strings to be used with sum.
Edit: Moved the parts about immutability to history.
Basically, its a question of preallocation. When you use a statement such as
sum(["a", "b", "c", ..., ])
and expect it to work similar to a reduce statement, the code generated looks something like
v1 = "" + "a" # must allocate v1 and set its size to len("") + len("a")
v2 = v1 + "b" # must allocate v2 and set its size to len("a") + len("b")
...
res = v10000 + "$" # must allocate res and set its size to len(v9999) + len("$")
In each of these steps a new string is created, which for one might give some copying overhead as the strings are getting longer and longer. But that’s maybe not the point here. What’s more important, is that every new string on each line must be allocated to it’s specific size (which. I don’t know it it must allocate in every iteration of the reduce statement, there might be some obvious heuristics to use and Python might allocate a bit more here and there for reuse – but at several points the new string will be large enough that this won’t help anymore and Python must allocate again, which is rather expensive.
A dedicated method like join, however has the job to figure out the real size of the string before it starts and would therefore in theory only allocate once, at the beginning and then just fill that new string, which is much cheaper than the other solution.
I dont know why, but this works!
import operator
def sum_of_strings(list_of_strings):
return reduce(operator.add, list_of_strings)
Coming from the beautiful world of c, I am trying understand this behavior:
In [1]: dataset = sqlContext.read.parquet('indir')
In [2]: sizes = dataset.mapPartitions(lambda x: [len(list(x))]).collect()
In [3]: for item in sizes:
...: if(item == min(sizes)):
...: count = count + 1
...:
would not even finish after 20 minutes, and I know that the list sizes is not that big, less than 205k in length. However this executed instantly:
In [8]: min_item = min(sizes)
In [9]: for item in sizes:
if(item == min_item):
count = count + 1
...:
So what happened?
My guess: python could not understand that min(sizes) will be always constant, thus replace after the first few calls with its return value..since Python uses the interpreter..
Ref of min() doesn't say anything that would explain the matter to me, but what I was thinking is that it may be that it needs to look at the partitions to do that, but that shouldn't be the case, since sizes is a list, not an RDD!
Edit:
Here is the source of my confusion, I wrote a similar program in C:
for(i = 0; i < SIZE; ++i)
if(i == mymin(array, SIZE))
++count;
and got these timings:
C02QT2UBFVH6-lm:~ gsamaras$ gcc -Wall main.c
C02QT2UBFVH6-lm:~ gsamaras$ ./a.out
That took 98.679177000 seconds wall clock time.
C02QT2UBFVH6-lm:~ gsamaras$ gcc -O3 -Wall main.c
C02QT2UBFVH6-lm:~ gsamaras$ ./a.out
That took 0.000000000 seconds wall clock time.
and for timings, I used Nomimal Animal's approach from my Time measurements.
I'm by no means an expert on the inner workings of python, but from my understanding thus far you'd like to compare the speed of
for item in sizes:
if(item == min(sizes)):
count = count + 1
and
min_item = min(sizes)
for item in sizes:
if(item == min_item):
count = count + 1
Now someone correct me if I have any of this wrong but,
In python lists are mutable and do not have a fixed length, and are treated as such, while in C an array has a fixed size. From this question:
Python lists are very flexible and can hold completely heterogeneous, arbitrary data, and they can be appended to very efficiently, in amortized constant time. If you need to shrink and grow your array time-efficiently and without hassle, they are the way to go. But they use a lot more space than C arrays.
Now take this example
for item in sizes:
if(item == min(sizes)):
new_item = item - 1
sizes.append(new_item)
Then the value of item == min(sizes) would be different on the next iteration. Python doesn't cache the resulting value of min(sizes) since it would break the above example, or require some logic to check if the list has been changed. Instead it leaves that up to you. By defining min_item = min(sizes) you are essentially caching the result yourself.
Now since the array is a fixed size in C, it can find the min value with less overhead than a python list, thus why I think it has no problem in C (as well as C being a much lower level language).
Again, I don't fully understand the underlying code and compilation for python, and I'm certain if you analyzed the process of the loops in python, you'd see python repeatedly computing min(sizes), causing the extreme amount of lag. I'd love to learn more about the inner workings of python (for example, are any methods cached in a loop for python, or is everything computed again for each iteration?) so if anyone has more info and/or corrections, let me know!
Closed. This question is opinion-based. It is not currently accepting answers.
Closed 4 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Python has a built in function sum, which is effectively equivalent to:
def sum2(iterable, start=0):
return start + reduce(operator.add, iterable)
for all types of parameters except strings. It works for numbers and lists, for example:
sum([1,2,3], 0) = sum2([1,2,3],0) = 6 #Note: 0 is the default value for start, but I include it for clarity
sum({888:1}, 0) = sum2({888:1},0) = 888
Why were strings specially left out?
sum( ['foo','bar'], '') # TypeError: sum() can't sum strings [use ''.join(seq) instead]
sum2(['foo','bar'], '') = 'foobar'
I seem to remember discussions in the Python list for the reason, so an explanation or a link to a thread explaining it would be fine.
Edit: I am aware that the standard way is to do "".join. My question is why the option of using sum for strings was banned, and no banning was there for, say, lists.
Edit 2: Although I believe this is not needed given all the good answers I got, the question is: Why does sum work on an iterable containing numbers or an iterable containing lists but not an iterable containing strings?
Python tries to discourage you from "summing" strings. You're supposed to join them:
"".join(list_of_strings)
It's a lot faster, and uses much less memory.
A quick benchmark:
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = reduce(operator.add, strings)'
100 loops, best of 3: 8.46 msec per loop
$ python -m timeit -s 'import operator; strings = ["a"]*10000' 'r = "".join(strings)'
1000 loops, best of 3: 296 usec per loop
Edit (to answer OP's edit): As to why strings were apparently "singled out", I believe it's simply a matter of optimizing for a common case, as well as of enforcing best practice: you can join strings much faster with ''.join, so explicitly forbidding strings on sum will point this out to newbies.
BTW, this restriction has been in place "forever", i.e., since the sum was added as a built-in function (rev. 32347)
You can in fact use sum(..) to concatenate strings, if you use the appropriate starting object! Of course, if you go this far you have already understood enough to use "".join(..) anyway..
>>> class ZeroObject(object):
... def __add__(self, other):
... return other
...
>>> sum(["hi", "there"], ZeroObject())
'hithere'
Here's the source: http://svn.python.org/view/python/trunk/Python/bltinmodule.c?revision=81029&view=markup
In the builtin_sum function we have this bit of code:
/* reject string values for 'start' parameter */
if (PyObject_TypeCheck(result, &PyBaseString_Type)) {
PyErr_SetString(PyExc_TypeError,
"sum() can't sum strings [use ''.join(seq) instead]");
Py_DECREF(iter);
return NULL;
}
Py_INCREF(result);
}
So.. that's your answer.
It's explicitly checked in the code and rejected.
From the docs:
The preferred, fast way to concatenate a
sequence of strings is by calling
''.join(sequence).
By making sum refuse to operate on strings, Python has encouraged you to use the correct method.
Short answer: Efficiency.
Long answer: The sum function has to create an object for each partial sum.
Assume that the amount of time required to create an object is directly proportional to the size of its data. Let N denote the number of elements in the sequence to sum.
doubles are always the same size, which makes sum's running time O(1)×N = O(N).
int (formerly known as long) is arbitary-length. Let M denote the absolute value of the largest sequence element. Then sum's worst-case running time is lg(M) + lg(2M) + lg(3M) + ... + lg(NM) = N×lg(M) + lg(N!) = O(N log N).
For str (where M = the length of the longest string), the worst-case running time is M + 2M + 3M + ... + NM = M×(1 + 2 + ... + N) = O(N²).
Thus, summing strings would be much slower than summing numbers.
str.join does not allocate any intermediate objects. It preallocates a buffer large enough to hold the joined strings, and copies the string data. It runs in O(N) time, much faster than sum.
The Reason Why
#dan04 has an excellent explanation for the costs of using sum on large lists of strings.
The missing piece as to why str is not allowed for sum is that many, many people were trying to use sum for strings, and not many use sum for lists and tuples and other O(n**2) data structures. The trap is that sum works just fine for short lists of strings, but then gets put in production where the lists can be huge, and the performance slows to a crawl. This was such a common trap that the decision was made to ignore duck-typing in this instance, and not allow strings to be used with sum.
Edit: Moved the parts about immutability to history.
Basically, its a question of preallocation. When you use a statement such as
sum(["a", "b", "c", ..., ])
and expect it to work similar to a reduce statement, the code generated looks something like
v1 = "" + "a" # must allocate v1 and set its size to len("") + len("a")
v2 = v1 + "b" # must allocate v2 and set its size to len("a") + len("b")
...
res = v10000 + "$" # must allocate res and set its size to len(v9999) + len("$")
In each of these steps a new string is created, which for one might give some copying overhead as the strings are getting longer and longer. But that’s maybe not the point here. What’s more important, is that every new string on each line must be allocated to it’s specific size (which. I don’t know it it must allocate in every iteration of the reduce statement, there might be some obvious heuristics to use and Python might allocate a bit more here and there for reuse – but at several points the new string will be large enough that this won’t help anymore and Python must allocate again, which is rather expensive.
A dedicated method like join, however has the job to figure out the real size of the string before it starts and would therefore in theory only allocate once, at the beginning and then just fill that new string, which is much cheaper than the other solution.
I dont know why, but this works!
import operator
def sum_of_strings(list_of_strings):
return reduce(operator.add, list_of_strings)