Half or quarter polar plots in Matplotlib? - python

I am trying to make a polar plot that goes 180 degrees instead of 360 in Matplotlib similar to http://www.mathworks.com/matlabcentral/fileexchange/27230-half-polar-coordinates-figure-plot-function-halfpolar in MATLAB. Any ideas?

The following works in matplotlib 2.1 or higher. There is also an example on the matplotlib page.
You may use a usual polar plot, ax = fig.add_subplot(111, polar=True) and confine the theta range. For a half polar plot
ax.set_thetamin(0)
ax.set_thetamax(180)
or for a quarter polar plot
ax.set_thetamin(0)
ax.set_thetamax(90)
Complete example:
import matplotlib.pyplot as plt
import numpy as np
theta = np.linspace(0,np.pi)
r = np.sin(theta)
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
c = ax.scatter(theta, r, c=r, s=10, cmap='hsv', alpha=0.75)
ax.set_thetamin(0)
ax.set_thetamax(180)
plt.show()

The example code in official matplotlib documentation may obscure things a little bit if someone just needs a simple quarter of half plot.
I wrote a code snippet that may help someone who is not that familiar with AxisArtists here.
"""
Reference:
1. https://gist.github.com/ycopin/3342888
2. http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#axisartist
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.projections import PolarAxes
from mpl_toolkits.axisartist.floating_axes import GridHelperCurveLinear, FloatingSubplot
import mpl_toolkits.axisartist.grid_finder as gf
def generate_polar_axes():
polar_trans = PolarAxes.PolarTransform()
# Setup the axis, here we map angles in degrees to angles in radius
phi_degree = np.arange(0, 90, 10)
tlocs = phi_degree * np.pi / 180
gl1 = gf.FixedLocator(tlocs) # Positions
tf1 = gf.DictFormatter(dict(zip(tlocs, map(str, phi_degree))))
# Standard deviation axis extent
radius_min = 0
radius_max = 1
# Set up the axes range in the parameter "extremes"
ghelper = GridHelperCurveLinear(polar_trans, extremes=(0, np.pi / 2, # 1st quadrant
radius_min, radius_max),
grid_locator1=gl1,
tick_formatter1=tf1,
)
figure = plt.figure()
floating_ax = FloatingSubplot(figure, 111, grid_helper=ghelper)
figure.add_subplot(floating_ax)
# Adjust axes
floating_ax.axis["top"].set_axis_direction("bottom") # "Angle axis"
floating_ax.axis["top"].toggle(ticklabels=True, label=True)
floating_ax.axis["top"].major_ticklabels.set_axis_direction("top")
floating_ax.axis["top"].label.set_axis_direction("top")
floating_ax.axis["top"].label.set_text("angle (deg)")
floating_ax.axis["left"].set_axis_direction("bottom") # "X axis"
floating_ax.axis["left"].label.set_text("radius")
floating_ax.axis["right"].set_axis_direction("top") # "Y axis"
floating_ax.axis["right"].toggle(ticklabels=True)
floating_ax.axis["right"].major_ticklabels.set_axis_direction("left")
floating_ax.axis["bottom"].set_visible(False) # Useless
# Contours along standard deviations
floating_ax.grid(True)
floating_ax.set_title("Quarter polar plot")
data_ax = floating_ax.get_aux_axes(polar_trans) # return the axes that can be plotted on
return figure, data_ax
if __name__ == "__main__":
# Plot data onto the defined polar axes
fig, ax = generate_polar_axes()
theta = np.random.rand(10) * np.pi / 2
radius = np.random.rand(10)
ax.scatter(theta, radius)
fig.savefig("test.png")

Related

How to set limits around (on both sides of) 0, in a polar Matplotlib plot (wedge diagram)

I am making a wedge diagram (plotting quasars in space, with RA as theta and Dec as r). I need to set the limits of a polar plot on both sides of 0. My limits should go from 45 degrees to 315 degrees with 0 degrees in between those two values (45-0-315). How do I do this?
This is my code:
import numpy as np
import matplotlib.pyplot as plt
theta = (np.pi/180)*np.array([340.555906,3.592373,32.473440,33.171584,35.463857,44.268397,339.362504,345.211906,346.485567,346.811945,348.672405,349.180736,349.370850,353.098343])
r = np.array([-32.906663,-33.842402,-32.425917,-32.677975, -30.701083,-31.460307,-32.909861,-30.802969,-33.683759,-32.207783,-33.068686,-33.820102,-31.438195,-31.920375])
colors = 'red'
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
c = ax.scatter(theta, r, c=colors, cmap='hsv', alpha=0.75)
plt.show()
If I put the limits:
ax.set_thetamin(45)
ax.set_thetamax(-45)
I get the correct slice of the diagram, but the wrong values on the theta axis (the axis now goes from -45-45 degrees).
If I put the limits:
ax.set_thetamin(45)
ax.set_thetamax(315)
I get the wrong slice of the diagram, but the correct values on the theta axis.
What to do?
It appears that matplotlib will only make the theta limits span across theta=0 if you have a positive and negative value for thetamin and thetamax. From the docstring for set_thetalim():
Values are wrapped in to the range [0, 2π] (in radians), so for example it is possible to do set_thetalim(-np.pi / 2, np.pi / 2) to have an axes symmetric around 0.
So setting:
ax.set_thetamin(45)
ax.set_thetamax(-45)
is the correct thing to do to get the plot you want. We can then modify the ticks later using a ticker.FuncFormatter to get the tick values you want.
For example:
import matplotlib.ticker as ticker
fmt = lambda x, pos: "{:g}".format(np.degrees(x if x >= 0 else x + 2 * np.pi))
ax.xaxis.set_major_formatter(ticker.FuncFormatter(fmt))
Which yields:
For completeness, here I put it all together in your script:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
theta = (np.pi/180)*np.array([340.555906,3.592373,32.473440,33.171584,35.463857,44.268397,339.362504,345.211906,346.485567,346.811945,348.672405,349.180736,349.370850,353.098343])
r = np.array([-32.906663,-33.842402,-32.425917,-32.677975, -30.701083,-31.460307,-32.909861,-30.802969,-33.683759,-32.207783,-33.068686,-33.820102,-31.438195,-31.920375])
colors = 'red'
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
c = ax.scatter(theta, r, c=colors, cmap='hsv', alpha=0.75)
ax.set_thetamin(45)
ax.set_thetamax(-45)
fmt = lambda x, pos: "{:g}".format(np.degrees(x if x >= 0 else x + 2 * np.pi))
ax.xaxis.set_major_formatter(ticker.FuncFormatter(fmt))
plt.show()

Using matlotlib: why do imshow and contourf not plot together? (contourf "overrides" imshow)

I am trying to plot some meteorological data onto a map and I would like to add an image of a plane using imshow. Plotting i) the trajectory, ii) some contour-data and iii) the image, works fine. But as soon as I add a contourf-plot (see below) the image dissapears!
Any ideas how to fix this?
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import cartopy.crs as crs
import cartopy.feature as cfeature
def plot_test():
#DEFINE DATA
x,y = np.meshgrid(np.linspace(0,90,100),np.linspace(0,90,100))
z = x**3 + y**3
#BEGIN FIGURE (IN THIS CASE A MAP, IM PLOTTING METEOROLOGICAL DATA)
fig = plt.figure(figsize = (6,6))
ax1 = plt.axes(projection=crs.PlateCarree(central_longitude=0))
ax1.set_extent([0,90,0,90], crs=crs.PlateCarree())
ax1.coastlines(resolution='auto', color='k')
#EXAMPLE DATA PLOTTED AS CONTOURF
v_max = int(z.max())
v_min = int(z.min())
qcs = ax1.contourf(x, y, z, cmap = "Blues", vmin = v_min, vmax = v_max)
sm = plt.cm.ScalarMappable(cmap="Blues",norm=qcs.norm)
sm._A = []
cbar = plt.colorbar(sm, ax=ax1,orientation="vertical")
cbar.ax.set_ylabel("some contourf data", rotation=90, fontsize = 15)
#PLOT IMAGE OF A PLANE (THIS IS NOT SHOWING UP ON THE PLOT!)
x0 = 50
y0 = 40
img=plt.imread("plane2.png")
ax1.imshow(img,extent=[x0,x0 - 10, y0, y0-10], label = "plane")
plt.show()
without contourf (code from above with lines 14-20 commented out):
with contourf:
Thank you 1000 times #JohanC (see comments). I simply had to place the z-order:
ax1.imshow(img, ...., zorder=3)
which made the plane show up!

scatterplot and combined polar histogram in matplotlib

I am attempting to produce a plot like this which combines a cartesian scatter plot and a polar histogram. (Radial lines optional)
A similar solution (by Nicolas Legrand) exists for looking at differences in x and y (code here), but we need to look at ratios (i.e. x/y).
More specifically, this is useful when we want to look at the relative risk measure which is the ratio of two probabilities.
The scatter plot on it's own is obviously not a problem, but the polar histogram is more advanced.
The most promising lead I have found is this central example from the matplotlib gallery here
I have attempted to do this, but have run up against the limits of my matplotlib skills. Any efforts moving towards this goal would be great.
I'm sure that others will have better suggestions, but one method that gets something like you want (without the need for extra axes artists) is to use a polar projection with a scatter and bar chart together. Something like
import matplotlib.pyplot as plt
import numpy as np
x = np.random.uniform(size=100)
y = np.random.uniform(size=100)
r = np.sqrt(x**2 + y**2)
phi = np.arctan2(y, x)
h, b = np.histogram(phi, bins=np.linspace(0, np.pi/2, 21), density=True)
colors = plt.cm.Spectral(h / h.max())
ax = plt.subplot(111, projection='polar')
ax.scatter(phi, r, marker='.')
ax.bar(b[:-1], h, width=b[1:] - b[:-1],
align='edge', bottom=np.max(r) + 0.2, color=colors)
# Cut off at 90 degrees
ax.set_thetamax(90)
# Set the r grid to cover the scatter plot
ax.set_rgrids([0, 0.5, 1])
# Let's put a line at 1 assuming we want a ratio of some sort
ax.set_thetagrids([45], [1])
which will give
It is missing axes labels and some beautification, but it might be a place to start. I hope it is helpful.
You can use two axes on top of each other:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(6,6))
ax1 = fig.add_axes([0.1,0.1,.8,.8], label="cartesian")
ax2 = fig.add_axes([0.1,0.1,.8,.8], projection="polar", label="polar")
ax2.set_rorigin(-1)
ax2.set_thetamax(90)
plt.show()
Ok. Thanks to the answer from Nicolas, and the answer from tomjn I have a working solution :)
import numpy as np
import matplotlib.pyplot as plt
# Scatter data
n = 50
x = 0.3 + np.random.randn(n)*0.1
y = 0.4 + np.random.randn(n)*0.02
def radial_corner_plot(x, y, n_hist_bins=51):
"""Scatter plot with radial histogram of x/y ratios"""
# Axis setup
fig = plt.figure(figsize=(6,6))
ax1 = fig.add_axes([0.1,0.1,.6,.6], label="cartesian")
ax2 = fig.add_axes([0.1,0.1,.8,.8], projection="polar", label="polar")
ax2.set_rorigin(-20)
ax2.set_thetamax(90)
# define useful constant
offset_in_radians = np.pi/4
def rotate_hist_axis(ax):
"""rotate so that 0 degrees is pointing up and right"""
ax.set_theta_offset(offset_in_radians)
ax.set_thetamin(-45)
ax.set_thetamax(45)
return ax
# Convert scatter data to histogram data
r = np.sqrt(x**2 + y**2)
phi = np.arctan2(y, x)
h, b = np.histogram(phi,
bins=np.linspace(0, np.pi/2, n_hist_bins),
density=True)
# SCATTER PLOT -------------------------------------------------------
ax1.scatter(x,y)
ax1.set(xlim=[0, 1], ylim=[0, 1], xlabel="x", ylabel="y")
ax1.spines['right'].set_visible(False)
ax1.spines['top'].set_visible(False)
# HISTOGRAM ----------------------------------------------------------
ax2 = rotate_hist_axis(ax2)
# rotation of axis requires rotation in bin positions
b = b - offset_in_radians
# plot the histogram
bars = ax2.bar(b[:-1], h, width=b[1:] - b[:-1], align='edge')
def update_hist_ticks(ax, desired_ratios):
"""Update tick positions and corresponding tick labels"""
x = np.ones(len(desired_ratios))
y = 1/desired_ratios
phi = np.arctan2(y,x) - offset_in_radians
# define ticklabels
xticklabels = [str(round(float(label), 2)) for label in desired_ratios]
# apply updates
ax2.set(xticks=phi, xticklabels=xticklabels)
return ax
ax2 = update_hist_ticks(ax2, np.array([1/8, 1/4, 1/2, 1, 2, 4, 8]))
# just have radial grid lines
ax2.grid(which="major", axis="y")
# remove bin count labels
ax2.set_yticks([])
return (fig, [ax1, ax2])
fig, ax = radial_corner_plot(x, y)
Thanks for the pointers!

matplotlib polar scatter plot: How do I change the units to anything but degrees?

In the matplotlib polar scatter plot, how can I change the units of the theta axis from angle to arbitrarily-specified units?
Starting from https://matplotlib.org/gallery/pie_and_polar_charts/polar_scatter.html (where all the examples are in degrees),
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# Compute areas and colors
N = 150
r = 2 * np.random.rand(N)
theta = 2 * np.pi * np.random.rand(N)
area = 200 * r**2
colors = theta
fig = plt.figure()
ax = fig.add_subplot(111, projection='polar')
c = ax.scatter(theta, r, c=colors, s=area, cmap='hsv', alpha=0.75)
plt.show()
The theta axis is always in degrees. What if I want it in, say, days, for a given function degrees=days2degrees(days)? Should I make use of
ax.set_thetalim()
ax.set_thetamin()
ax.set_thetamax()
etc.? These seem to require inputs in degrees.
Not sure this answers your question:
Just add something like
t = ax.get_xticks()
# your function
days = t/(2 * np.pi) * 365
ax.set_xticklabels(days, fontsize=12)

matplotlib scatterplot: adding 4th dimension by the marker shape

I would like to add a fourth dimension to the scatter plot by defining the ellipticity of the markers depending on a variable. Is that possible somehow ?
EDIT:
I would like to avoid a 3D-plot. In my opinion these plots are usually not very informative.
You can place Ellipse patches directly onto your axes, as demonstrated in this matplotlib example. To adapt it to use eccentricity as your "third dimension") keeping the marker area constant:
from pylab import figure, show, rand
from matplotlib.patches import Ellipse
import numpy as np
import matplotlib.pyplot as plt
N = 25
# ellipse centers
xy = np.random.rand(N, 2)*10
# ellipse eccentrities
eccs = np.random.rand(N) * 0.8 + 0.1
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')
A = 0.1
for pos, e in zip(xy, eccs):
# semi-minor, semi-major axes, b and a:
b = np.sqrt(A/np.pi * np.sqrt(1-e**2))
a = A / np.pi / b
ellipse = Ellipse(xy=pos, width=2*a, height=2*b)
ax.add_artist(ellipse)
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
show()
Of course, you need to scale your marker area to your x-, y- values in this case.
You can use colorbar as the 4th dimension to your 3D plot. One example is as shown below:
import matplotlib.cm as cmx
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
def scatter3d(x,y,z, cs, colorsMap='jet'):
cm = plt.get_cmap(colorsMap)
cNorm = matplotlib.colors.Normalize(vmin=min(cs), vmax=max(cs))
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x, y, z, c=scalarMap.to_rgba(cs))
scalarMap.set_array(cs)
fig.colorbar(scalarMap,label='Test')
plt.show()
x = np.random.uniform(0,1,50)
y = np.random.uniform(0,1,50)
z = np.random.uniform(0,1,50)
so scatter3D(x,y,z,x+y) produces:
with x+y being the 4th dimension shown in color. You can add your calculated ellipticity depending on your specific variable instead of x+y to get what you want.
To change the ellipticity of the markers you will have to create them manually as such a feature is not implemented yet. However, I believe you can show 4 dimensions with a 2D scatter plot by using color and size as additional dimensions. You will have to take care of the scaling from data to marker size yourself. I added a simple function to handle that in the example below:
import matplotlib.pyplot as plt
import numpy as np
data = np.random.rand(60,4)
def scale_size(data, data_min=None, data_max=None, size_min=10, size_max=60):
# if the data limits are set to None we will just infer them from the data
if data_min is None:
data_min = data.min()
if data_max is None:
data_max = data.max()
size_range = size_max - size_min
data_range = data_max - data_min
return ((data - data_min) * size_range / data_range) + size_min
plt.scatter(data[:,0], data[:,1], c=data[:,2], s=scale_size(data[:,3]))
plt.colorbar()
plt.show()
Result:

Categories