Measuring apparent length of object (in pixels) using OpenCV - python

I have used blender to render different images of my 3D object from different angles/poses. The object has colored edges (as shown in the image).
Now, I aim to measure the length of the orange and blue edge (Lo and Lb) in pixels, using OpenCV. Had the edge been made of a single pixel (i.e., a line made of a single edge), it would be an easy task. But, this is not the case here.
Any help is appreciated.

Here is one way in Python OpenCV.
- Read the input
- Threshold on one of the colors
- Apply morphology to close gap
- Get the contour
- Get the rotated rectangle
- Get the length from the rotated rectangle
- Compute the centerline length
- Draw the rotated rectangle on the input
- Draw the centerline on the input
- Save the results
Input:
import cv2
import numpy as np
import math
# read image
img = cv2.imread("blender.png")
# get color bounds of brown
lower =(0,30,60) # lower bound for each channel
upper = (20,50,80) # upper bound for each channel
# create the mask and use it to change the colors
thresh = cv2.inRange(img, lower, upper)
# apply morphology
kernel = np.ones((3,3), np.uint8)
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
# get contour
contours = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
cntr = contours[0]
# get rotated rectangle from contour
rot_rect = cv2.minAreaRect(cntr)
box = cv2.boxPoints(rot_rect)
box = np.int0(box)
# draw rotated rectangle on copy of img
rot_bbox = img.copy()
cv2.drawContours(rot_bbox, [box], 0, (255,255,255), 1)
# get dimensions
(center), (width,height), angle = rot_rect
# print dimensions
print('length=', height)
print('thickness=', width)
# get center line from box
# note points are clockwise from bottom right
x1 = (box[0][0] + box[3][0]) // 2
y1 = (box[0][1] + box[3][1]) // 2
x2 = (box[1][0] + box[2][0]) // 2
y2 = (box[1][1] + box[2][1]) // 2
# draw centerline on image
center_line = img.copy()
cv2.line(center_line, (x1,y1), (x2,y2), (255,255,255), 1)
# compute center line length
cl_length = math.sqrt( (x1-x2)**2 + (y1-y2)**2 )
print('centerline_length',cl_length)
# write img with red rotated bounding box to disk
cv2.imwrite("blender_thresh.jpg", thresh)
cv2.imwrite("blender_morph.jpg", morph)
cv2.imwrite("blender_rot_rect.jpg", rot_bbox)
cv2.imwrite("blender_length.jpg", center_line)
# display it
cv2.imshow("THRESHOLD", thresh)
cv2.imshow("MORPH", morph)
cv2.imshow("BBOX", rot_bbox)
cv2.imshow("CENTLINE", center_line)
cv2.waitKey(0)
Threshold image:
Morphology image:
Rotated Rectangle on input:
Centerline on input:
Measurements:
length= 488.6615295410156
thickness= 9.058079719543457
centerline_length 488.83637344207517

Related

How to measure average thickness of labeled segmented image

I have an image and I've done some pre-processing on the that image. Below I showed my preprocessing:
img= cv2.imread("...my_drive...\\image_69.tif",0)
median=cv2.medianBlur(img,13)
ret, th = cv2.threshold(median, 0 , 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel=np.ones((3,15),np.uint8)
closing1 = cv2.morphologyEx(th, cv2.MORPH_CLOSE, kernel, iterations=2)
kernel=np.ones((1,31),np.uint8)
closing2 = cv2.morphologyEx(closing1, cv2.MORPH_CLOSE, kernel)
kernel=np.ones((1,13),np.uint8)
opening1= cv2.morphologyEx(closing2, cv2.MORPH_OPEN, kernel, iterations=2)
So, basically I used "Threshold filtering" , "closing" and "opening" and the result looks like this:
Please note that when I used type(opening1), I got numpy.ndarray. So the image at this step is numpy array with 1021 x 1024 size.
Then I labeled my image:
label_image=measure.label(opening1, connectivity=opening1.ndim)
props= measure.regionprops_table (label_image, properties=['label', "area", "coords"])
and the result looks like this
Please note that when I used type(label_image), I got numpy.ndarray. So the image at this step is numpy array with 1021 x 1024 size.
As you can see, currently the image has 6 labels. Some of these labels are short and small pieces, so I tried to keep top 2 label based on area
slc=label_image
rps=regionprops(slc)
areas=[r.area for r in rps]
id=np.argsort(props["area"])[::-1]
new_slc=np.zeros_like(slc)
for i in id[:2]:
new_slc[tuple(rps[i].coords.T)]=i+1
Now the result looks like this:
It looks like I was successful in keeping 2 top regions (please note that by changing id[:2] you can select thickest white layer or thin layer). Now:
What I want to do: I want to find the average thickness of these two regions
Also, please note that I know each of my pixels is 314 nm
Can anyone here advise how I can do this task?
Original photo: Below I showed low quality of my original image, so you have better understanding as why I did all the pre-processing
you can also access the original photo here : https://www.mediafire.com/file/20h66aq83edy1h7/img.7z/file
Here is one way to do that in Python/OpenCV.
Read the input
Convert to gray
Threshold to binary
Get the contours and filter on area so that we have only the two primary lines
Sort by area
Select the first (smaller and thinner) contour
Draw it white filled on a black background
Get its skeleton
Get the points of the skeleton
Fit a line to the points and get the rotation angle of the skeleton
Loop over each of the two contours and draw them white filled on a black background. Then rotate to horizontal lines. Then get the vertical thickness of the lines from the average thickness along each column using np.count_nonzero() and print the value.
Save intermediate images
Input:
import cv2
import numpy as np
import skimage.morphology
import skimage.transform
import math
# read image
img = cv2.imread('lines.jpg')
# convert to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# get contours
new_contours = []
img2 = np.zeros_like(thresh, dtype=np.uint8)
contour_img = thresh.copy()
contour_img = cv2.merge([contour_img,contour_img,contour_img])
contours = cv2.findContours(thresh , cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
area = cv2.contourArea(cntr)
if area > 1000:
cv2.drawContours(contour_img, [cntr], 0, (0,0,255), 1)
cv2.drawContours(img2, [cntr], 0, (255), -1)
new_contours.append(cntr)
# sort contours by area
cnts_sort = sorted(new_contours, key=lambda x: cv2.contourArea(x), reverse=False)
# select first (smaller) sorted contour
first_contour = cnts_sort[0]
contour_first_img = np.zeros_like(thresh, dtype=np.uint8)
cv2.drawContours(contour_first_img, [first_contour], 0, (255), -1)
# thin smaller contour
thresh1 = (contour_first_img/255).astype(np.float64)
skeleton = skimage.morphology.skeletonize(thresh1)
skeleton = (255*skeleton).clip(0,255).astype(np.uint8)
# get skeleton points
pts = np.column_stack(np.where(skeleton.transpose()==255))
# fit line to pts
(vx,vy,x,y) = cv2.fitLine(pts, cv2.DIST_L2, 0, 0.01, 0.01)
#print(vx,vy,x,y)
x_axis = np.array([1, 0]) # unit vector in the same direction as the x axis
line_direction = np.array([vx, vy]) # unit vector in the same direction as your line
dot_product = np.dot(x_axis, line_direction)
[angle_line] = (180/math.pi)*np.arccos(dot_product)
print("angle:", angle_line)
# loop over each sorted contour
# draw contour filled on black background
# rotate
# get mean thickness from np.count_non-zeros
black = np.zeros_like(thresh, dtype=np.uint8)
i = 1
for cnt in cnts_sort:
cnt_img = black.copy()
cv2.drawContours(cnt_img, [cnt], 0, (255), -1)
cnt_img_rot = skimage.transform.rotate(cnt_img, angle_line, resize=False)
thickness = np.mean(np.count_nonzero(cnt_img_rot, axis=0))
print("line ",i,"=",thickness)
i = i + 1
# save resulting images
cv2.imwrite('lines_thresh.jpg',thresh)
cv2.imwrite('lines_filtered.jpg',img2)
cv2.imwrite('lines_small_contour_skeleton.jpg',skeleton )
# show thresh and result
cv2.imshow("thresh", thresh)
cv2.imshow("contours", contour_img)
cv2.imshow("lines_filtered", img2)
cv2.imshow("first_contour", contour_first_img)
cv2.imshow("skeleton", skeleton)
cv2.waitKey(0)
cv2.destroyAllWindows()
Threshold image:
Contour image:
Filtered contour image:
Skeleton image:
Angle (in degrees) and Thicknesses (in pixels):
angle: 3.1869032185349733
line 1 = 8.79219512195122
line 2 = 49.51609756097561
To get the thickness in nm, multiply thickness in pixels by your 314 nm/pixel.
ADDITION
If I start with your tiff image, the following shows my preprocessing, which is similar to yours.
import cv2
import numpy as np
import skimage.morphology
import skimage.transform
import math
# read image
img = cv2.imread('lines.tif')
# convert to grayscale
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# threshold
thresh = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY)[1]
# apply morphology
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,5))
morph = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (29,1))
morph = cv2.morphologyEx(morph, cv2.MORPH_CLOSE, kernel)
# get contours
new_contours = []
img2 = np.zeros_like(gray, dtype=np.uint8)
contour_img = gray.copy()
contour_img = cv2.merge([contour_img,contour_img,contour_img])
contours = cv2.findContours(morph , cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
area = cv2.contourArea(cntr)
if area > 1000:
cv2.drawContours(contour_img, [cntr], 0, (0,0,255), 1)
cv2.drawContours(img2, [cntr], 0, (255), -1)
new_contours.append(cntr)
# sort contours by area
cnts_sort = sorted(new_contours, key=lambda x: cv2.contourArea(x), reverse=False)
# select first (smaller) sorted contour
first_contour = cnts_sort[0]
contour_first_img = np.zeros_like(morph, dtype=np.uint8)
cv2.drawContours(contour_first_img, [first_contour], 0, (255), -1)
# thin smaller contour
thresh1 = (contour_first_img/255).astype(np.float64)
skeleton = skimage.morphology.skeletonize(thresh1)
skeleton = (255*skeleton).clip(0,255).astype(np.uint8)
# get skeleton points
pts = np.column_stack(np.where(skeleton.transpose()==255))
# fit line to pts
(vx,vy,x,y) = cv2.fitLine(pts, cv2.DIST_L2, 0, 0.01, 0.01)
#print(vx,vy,x,y)
x_axis = np.array([1, 0]) # unit vector in the same direction as the x axis
line_direction = np.array([vx, vy]) # unit vector in the same direction as your line
dot_product = np.dot(x_axis, line_direction)
[angle_line] = (180/math.pi)*np.arccos(dot_product)
print("angle:", angle_line)
# loop over each sorted contour
# draw contour filled on black background
# rotate
# get mean thickness from np.count_non-zeros
black = np.zeros_like(thresh, dtype=np.uint8)
i = 1
for cnt in cnts_sort:
cnt_img = black.copy()
cv2.drawContours(cnt_img, [cnt], 0, (255), -1)
cnt_img_rot = skimage.transform.rotate(cnt_img, angle_line, resize=False)
thickness = np.mean(np.count_nonzero(cnt_img_rot, axis=0))
print("line ",i,"=",thickness)
i = i + 1
# save resulting images
cv2.imwrite('lines_thresh2.jpg',thresh)
cv2.imwrite('lines_morph2.jpg',morph)
cv2.imwrite('lines_filtered2.jpg',img2)
cv2.imwrite('lines_small_contour_skeleton2.jpg',skeleton )
# show thresh and result
cv2.imshow("thresh", thresh)
cv2.imshow("morph", morph)
cv2.imshow("contours", contour_img)
cv2.imshow("lines_filtered", img2)
cv2.imshow("first_contour", contour_first_img)
cv2.imshow("skeleton", skeleton)
cv2.waitKey(0)
cv2.destroyAllWindows()
Threshold image:
Morphology image:
Filtered Lines image:
Skeleton image:
Angle (degrees) and Thickness (pixels):
angle: 3.206927978669998
line 1 = 9.26171875
line 2 = 49.693359375
Use Deskew to straighten up the image.
Then, count the pixels of each column of the color of the label you want to measure then divide it by the number of columns to get the average thickness
This can be done with various tools in scipy. Assume you have the image here:
I = PIL.Image.open("input.jpg")
img = np.array(I).mean(axis=2)
mask = img==255 # or some kind of thresholding
imshow(mask) #note this is a binary image, the green coloring is due to some kind of rendering artifact or aliasing
If one zooms in they can see split up regions
To get around that we can dilate the mask
from scipy import ndimage as ni
mask1 = ni.binary_dilation(mask, iterations=2)
imshow(mask1)
Now, we can find connected regions, and find the top regions with the most pixels, which should be the two lines of interest:
lab, nlab = ni.label(mask1)
max_labs = np.argsort([ (lab==i).sum() for i in range(1, nlab+1)])[::-1]+1
imshow(lab==max_labs[0])
and imshow(lab==max_labs[1])
Working with the first line as an example:
from scipy.stats import linregress
y0,x0 = np.where(lab==max_labs[0])
l0 = linregress( x0, y0)
xi,yi = np.arange(img.shape[3]), np.arange(img.shape[3])*l0.slope + l0.intercept
plot( xi, yi, 'r--')
Interpolate along this region at different y-intercepts and compute the average signal along each line
from scipy.interpolate import RectBivariateSpline
img0 = img.copy()
img0[~(lab==max_labs[0])] = 0 # set everything outside this line region to 0
rbv = RectBivariateSpline(np.arange(img.shape[0]), np.arange(img.shape[1]), img0)
prof0 = [rbv.ev(yi+i, xi).mean() for i in np.arange(-300,300)] # pick a wide window here (-300,300), can be more technical, but not necessary
plot(prof0)
Use your favorite method to compute the FWHM of this profile, then multiply by your pixel-to-nanometers factor.
I would just use a Gaussian fit to compute fwhm
xvals = np.arange(len(prof0))
yvals = np.array(prof0)
def func(p, xvals, yvals):
mu,var, amp = p
model = np.exp(-(xvals-mu)**2/2/var)*amp
resid = (model-yvals)**2
return resid.sum()
from scipy.optimize import minimize
x0 = 300,200,255 # initial estimate of mu, variance, amplitude
fit_gauss = minimize(func, x0=x0, args=(xvals, yvals), method='Nelder-Mead')
mu, var, amp = fit_gauss.x
fwhm = 2.355 * np.sqrt(var)
# display using matplotlib plot /hlines
plot( xvals, yvals)
plot( xvals, amp*np.exp(-(xvals-mu)**2/2/var) )
hlines(amp*0.5, mu-fwhm/2., mu+fwhm/2, color='r')
legend(("profile","fit gauss","fwhm=%.2f pix" % fwhm))
Finally, thickness=fwhm*314, or about 13 microns.
Following the exact same approach for the second line (lab==max_labs[1]) gives a thickness of about 2.2 microns:
Note, I was using interactive plotting to do this example, hence calls to imshow , plot etc. are meant motly as a reference to the reader. One may need to take extra steps to recreate the exact images I've uploaded (zooming etc).

How to find the junction points or segments in a skeletonized image Python OpenCV?

I am trying to convert the result of a skeletonization into a set of line segments, where the vertices correspond to the junction points of the skeleton. The shape is not a closed polygon and it may be somewhat noisy (the segments are not as straight as they should be).
Here is an example input image:
And here are the points I want to retrieve:
I have tried using the harris corner detector, but it has trouble in some areas even after trying to tweak the algorithm's parameters (such as the angled section on the bottom of the image). Here are the results:
Do you know of any method capable of doing this? I am using python with mostly OpenCV and Numpy but I am not bound to any library. Thanks in advance.
Edit: I've gotten some good responses regarding the junction points, I am really grateful. I would also appreciate any solutions regarding extracting line segments from the junction points. I think #nathancy's answer could be used to extract line segments by subtracting the masks with the intersection mask, but I am not sure.
My approach is based on my previous answer here. It involves convolving the image with a special kernel. This convolution identifies the end-points of the lines, as well as the intersections. This will result in a points mask containing the pixel that matches the points you are looking for. After that, apply a little bit of morphology to join possible duplicated points. The method is sensible to the corners produced by the skeleton.
This is the code:
import cv2
import numpy as np
# image path
path = "D://opencvImages//"
fileName = "Repn3.png"
# Reading an image in default mode:
inputImage = cv2.imread(path + fileName)
inputImageCopy = inputImage.copy()
# Convert to grayscale:
grayscaleImage = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY)
# Compute the skeleton:
skeleton = cv2.ximgproc.thinning(grayscaleImage, None, 1)
# Threshold the image so that white pixels get a value of 10 and
# black pixels a value of 0:
_, binaryImage = cv2.threshold(skeleton, 128, 10, cv2.THRESH_BINARY)
# Set the convolution kernel:
h = np.array([[1, 1, 1],
[1, 10, 1],
[1, 1, 1]])
# Convolve the image with the kernel:
imgFiltered = cv2.filter2D(binaryImage, -1, h)
So far I convolved the skeleton image with my special kernel. You can inspect the image produced and search for the numerical values at the corners and intersections.
This is the output so far:
Next, identify a corner or an intersection. This bit is tricky, because the threshold value depends directly on the skeleton image, which sometimes doesn't produce good (close to straight) corners:
# Create list of thresholds:
thresh = [130, 110, 40]
# Prepare the final mask of points:
(height, width) = binaryImage.shape
pointsMask = np.zeros((height, width, 1), np.uint8)
# Perform convolution and create points mask:
for t in range(len(thresh)):
# Get current threshold:
currentThresh = thresh[t]
# Locate the threshold in the filtered image:
tempMat = np.where(imgFiltered == currentThresh, 255, 0)
# Convert and shape the image to a uint8 height x width x channels
# numpy array:
tempMat = tempMat.astype(np.uint8)
tempMat = tempMat.reshape(height,width,1)
# Accumulate mask:
pointsMask = cv2.bitwise_or(pointsMask, tempMat)
This is the binary mask:
Let's dilate to join close points:
# Set kernel (structuring element) size:
kernelSize = 3
# Set operation iterations:
opIterations = 4
# Get the structuring element:
morphKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernelSize, kernelSize))
# Perform Dilate:
pointsMask = cv2.morphologyEx(pointsMask, cv2.MORPH_DILATE, morphKernel, None, None, opIterations, cv2.BORDER_REFLECT101)
This is the output:
Now simple extract external contours. Get their bounding boxes and calculate their centroid:
# Look for the outer contours (no children):
contours, _ = cv2.findContours(pointsMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Store the points here:
pointsList = []
# Loop through the contours:
for i, c in enumerate(contours):
# Get the contours bounding rectangle:
boundRect = cv2.boundingRect(c)
# Get the centroid of the rectangle:
cx = int(boundRect[0] + 0.5 * boundRect[2])
cy = int(boundRect[1] + 0.5 * boundRect[3])
# Store centroid into list:
pointsList.append( (cx,cy) )
# Set centroid circle and text:
color = (0, 0, 255)
cv2.circle(inputImageCopy, (cx, cy), 3, color, -1)
font = cv2.FONT_HERSHEY_COMPLEX
cv2.putText(inputImageCopy, str(i), (cx, cy), font, 0.5, (0, 255, 0), 1)
# Show image:
cv2.imshow("Circles", inputImageCopy)
cv2.waitKey(0)
This is the result. Some corners are missed, you might one to improve the solution before computing the skeleton.
Here's a simple approach, the idea is:
Obtain binary image. Load image, convert to grayscale, Gaussian blur, then Otsu's threshold.
Obtain horizontal and vertical line masks. Create horizontal and vertical structuring elements with cv2.getStructuringElement then perform cv2.morphologyEx to isolate the lines.
Find joints. We cv2.bitwise_and the two masks together to get the joints. The idea is that the intersection points on the two masks are the joints.
Find centroid on joint mask. We find contours then calculate the centroid.
Find leftover endpoints. Endpoints do not correspond to an intersection so to find those, we can use the Shi-Tomasi Corner Detector
Horizontal and vertical line masks
Results (joints in green and endpoints in blue)
Code
import cv2
import numpy as np
# Load image, grayscale, Gaussian blur, Otsus threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (3,3), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Find horizonal lines
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,1))
horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=1)
# Find vertical lines
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,5))
vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=1)
# Find joint intersections then the centroid of each joint
joints = cv2.bitwise_and(horizontal, vertical)
cnts = cv2.findContours(joints, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
# Find centroid and draw center point
x,y,w,h = cv2.boundingRect(c)
centroid, coord, area = cv2.minAreaRect(c)
cx, cy = int(centroid[0]), int(centroid[1])
cv2.circle(image, (cx, cy), 5, (36,255,12), -1)
# Find endpoints
corners = cv2.goodFeaturesToTrack(thresh, 5, 0.5, 10)
corners = np.int0(corners)
for corner in corners:
x, y = corner.ravel()
cv2.circle(image, (x, y), 5, (255,100,0), -1)
cv2.imshow('thresh', thresh)
cv2.imshow('joints', joints)
cv2.imshow('horizontal', horizontal)
cv2.imshow('vertical', vertical)
cv2.imshow('image', image)
cv2.waitKey()

Area of a closed contour on a plot using python openCV

I am attempting to find the area inside an arbitrarily-shaped closed curve plotted in python (example image below). So far, I have tried to use both the alphashape and polygon methods to acheive this, but both have failed. I am now attempting to use OpenCV and the floodfill method to count the number of pixels inside the curve and then I will later convert that to an area given the area that a single pixel encloses on the plot.
Example image:
testplot.jpg
In order to do this, I am doing the following, which I adapted from another post about OpenCV.
import cv2
import numpy as np
# Input image
img = cv2.imread('testplot.jpg', cv2.IMREAD_GRAYSCALE)
# Dilate to better detect contours
temp = cv2.dilate(temp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
# Find largest contour
cnts, _ = cv2.findContours(255-temp, cv2.RETR_TREE , cv2.CHAIN_APPROX_NONE) #255-img and cv2.RETR_TREE is to account for how cv2 expects the background to be black, not white, so I convert the background to black.
largestCnt = [] #I expect this to yield the blue contour
for cnt in cnts:
if (len(cnt) > len(largestCnt)):
largestCnt = cnt
# Determine center of area of largest contour
M = cv2.moments(largestCnt)
x = int(M["m10"] / M["m00"])
y = int(M["m01"] / M["m00"])
# Initial mask for flood filling, should cover entire figure
width, height = temp.shape
mask = img2 = np.ones((width + 2, height + 2), np.uint8) * 255
mask[1:width, 1:height] = 0
# Generate intermediate image, draw largest contour onto it, flood fill this contour
temp = np.zeros(temp.shape, np.uint8)
temp = cv2.drawContours(temp, largestCnt, -1, 255, cv2.FILLED)
_, temp, mask, _ = cv2.floodFill(temp, mask, (x, y), 255)
temp = cv2.morphologyEx(temp, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
area = cv2.countNonZero(temp) #Number of pixels encircled by blue line
I expect from this to get to a place where I have the same image as above, but with the center of the contour filled in white and the background and original blue contour in black. I end up with this:
result.jpg
While this at first glance appears to have accurately turned the area inside the contour white, the white area is actually larger than the area inside the contour and so the result I get is overestimating the number of pixels inside it.
Any input on this would be greatly appreciated. I am fairly new to OpenCV so I may have misunderstood something.
EDIT:
Thanks to a comment below, I made some edits and this is now my code, with edits noted:
import cv2
import numpy as np
# EDITED INPUT IMAGE: Input image
img = cv2.imread('testplot2.jpg', cv2.IMREAD_GRAYSCALE)
# EDIT: threshold
_, temp = cv2.threshold(img, 250, 255, cv2.THRESH_BINARY_INV)
# EDIT, REMOVED: Dilate to better detect contours
# Find largest contour
cnts, _ = cv2.findContours(temp, cv2.RETR_EXTERNAL , cv2.CHAIN_APPROX_NONE)
largestCnt = [] #I expect this to yield the blue contour
for cnt in cnts:
if (len(cnt) > len(largestCnt)):
largestCnt = cnt
# Determine center of area of largest contour
M = cv2.moments(largestCnt)
x = int(M["m10"] / M["m00"])
y = int(M["m01"] / M["m00"])
# Initial mask for flood filling, should cover entire figure
width, height = temp.shape
mask = img2 = np.ones((width + 2, height + 2), np.uint8) * 255
mask[1:width, 1:height] = 0
# Generate intermediate image, draw largest contour, flood filled
temp = np.zeros(temp.shape, np.uint8)
temp = cv2.drawContours(temp, largestCnt, -1, 255, cv2.FILLED)
_, temp, mask, _ = cv2.floodFill(temp, mask, (x, y), 255)
temp = cv2.morphologyEx(temp, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
area = cv2.countNonZero(temp) #Number of pixels encircled by blue line
I input a different image with the axes and the frame that python adds by default removed for ease. I get what I expect at the second step, so this image. However, in the enter image description here both the original contour and the area it encircles appear to have been made white, whereas I want the original contour to be black and only the area it encircles to be white. How might I acheive this?
The problem is your opening operation at the end. This morphological operation includes a dilation at the end that expands the white contour, increasing its area. Let’s try a different approach where no morphology is involved. These are the steps:
Convert your image to grayscale
Apply Otsu’s thresholding to get a binary image, let’s work with black and white pixels only.
Apply a first flood-fill operation at image location (0,0) to get rid of the outer white space.
Filter small blobs using an area filter
Find the “Curve Canvas” (The white space that encloses the curve) and locate and store its starting point at (targetX, targetY)
Apply a second flood-fill al location (targetX, targetY)
Get the area of the isolated blob with cv2.countNonZero
Let’s take a look at the code:
import cv2
import numpy as np
# Set image path
path = "C:/opencvImages/"
fileName = "cLIjM.jpg"
# Read Input image
inputImage = cv2.imread(path+fileName)
inputCopy = inputImage.copy()
# Convert BGR to grayscale:
grayscaleImage = cv2.cvtColor(inputImage, cv2.COLOR_BGR2GRAY)
# Threshold via Otsu + bias adjustment:
threshValue, binaryImage = cv2.threshold(grayscaleImage, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
This is the binary image you get:
Now, let’s flood-fill at the corner located at (0,0) with a black color to get rid of the first white space. This step is very straightforward:
# Flood-fill background, seed at (0,0) and use black color:
cv2.floodFill(binaryImage, None, (0, 0), 0)
This is the result, note how the first big white area is gone:
Let’s get rid of the small blobs applying an area filter. Everything below an area of 100 is gonna be deleted:
# Perform an area filter on the binary blobs:
componentsNumber, labeledImage, componentStats, componentCentroids = \
cv2.connectedComponentsWithStats(binaryImage, connectivity=4)
# Set the minimum pixels for the area filter:
minArea = 100
# Get the indices/labels of the remaining components based on the area stat
# (skip the background component at index 0)
remainingComponentLabels = [i for i in range(1, componentsNumber) if componentStats[i][4] >= minArea]
# Filter the labeled pixels based on the remaining labels,
# assign pixel intensity to 255 (uint8) for the remaining pixels
filteredImage = np.where(np.isin(labeledImage, remainingComponentLabels) == True, 255, 0).astype('uint8')
This is the result of the filter:
Now, what remains is the second white area, I need to locate its starting point because I want to apply a second flood-fill operation at this location. I’ll traverse the image to find the first white pixel. Like this:
# Get Image dimensions:
height, width = filteredImage.shape
# Store the flood-fill point here:
targetX = -1
targetY = -1
for i in range(0, width):
for j in range(0, height):
# Get current binary pixel:
currentPixel = filteredImage[j, i]
# Check if it is the first white pixel:
if targetX == -1 and targetY == -1 and currentPixel == 255:
targetX = i
targetY = j
print("Flooding in X = "+str(targetX)+" Y: "+str(targetY))
There’s probably a more elegant, Python-oriented way of doing this, but I’m still learning the language. Feel free to improve the script (and share it here). The loop, however, gets me the location of the first white pixel, so I can now apply a second flood-fill at this exact location:
# Flood-fill background, seed at (targetX, targetY) and use black color:
cv2.floodFill(filteredImage, None, (targetX, targetY), 0)
You end up with this:
As you see, just count the number of non-zero pixels:
# Get the area of the target curve:
area = cv2.countNonZero(filteredImage)
print("Curve Area is: "+str(area))
The result is:
Curve Area is: 1510
Here is another approach using Python/OpenCV.
Read Input
convert to HSV colorspace
Threshold on color range of blue
Find the largest contour
Get its area and print that
draw the contour as a white filled contour on black background
Save the results
Input:
import cv2
import numpy as np
# read image as grayscale
img = cv2.imread('closed_curve.jpg')
# convert to HSV
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
#select blu color range in hsv
lower = (24,128,115)
upper = (164,255,255)
# threshold on blue in hsv
thresh = cv2.inRange(hsv, lower, upper)
# get largest contour
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = contours[0] if len(contours) == 2 else contours[1]
big_contour = max(contours, key=cv2.contourArea)
area = cv2.contourArea(c)
print("Area =",area)
# draw filled contour on black background
result = np.zeros_like(thresh)
cv2.drawContours(result, [c], -1, 255, cv2.FILLED)
# save result
cv2.imwrite("closed_curve_thresh.jpg", thresh)
cv2.imwrite("closed_curve_result.jpg", result)
# view result
cv2.imshow("threshold", thresh)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Threshold Image:
Result Filled Contour On Black Background:
Area Result:
Area = 2347.0

Python/OpenCV — Intelligent Centroid Tracking in Bacterial Images?

I'm currently working on an algorithm to detect bacterial centroids in microscopy images.
This question is a continuation of: OpenCV/Python — Matching Centroid Points of Bacteria in Two Images: Python/OpenCV — Matching Centroid Points of Bacteria in Two Images
I am using a modified version of the program proposed by Rahul Kedia.
https://stackoverflow.com/a/63049277/13696853
Currently, the issues in segmentation I am working on are:
Low Contrast
Clustering
The images below are sampled a second apart. However, in the latter image, one of the bacteria does not get detected.
Bright-field Image #1
Bright-Field Image #2
Bright-Field Contour Image #1
Bright-Field Contour Image #2
Bright-Field Image #1 (Unsegmented)
Bright-Field Image #2 (Unsegmented)
I want to know, given that I can successfully determine bacterial centroids in an image, can I use the data to intelligently look for the same bacteria in the subsequent image?
I haven't been able to find anything substantial online; I believe SIFT/SURF would likely be ineffective as the bacteria have the same appearance. Moreover, I am looking for specific points in the images. You can view my program below. Insert a specific path as indicated if you'd like to run the program.
import cv2
import numpy as np
import os
kernel = np.array([[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]], dtype=np.uint8)
def e_d(image, it):
image = cv2.erode(image, kernel, iterations=it)
image = cv2.dilate(image, kernel, iterations=it)
return image
path = r"[INSERT PATH]"
img_files = [file for file in os.listdir(path)]
def segment_index(index: int):
segment_file(img_files[index])
def segment_file(img_file: str):
img_path = path + "\\" + img_file
print(img_path)
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Applying adaptive mean thresholding
th = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 2)
# Removing small noise
th = e_d(th.copy(), 1)
# Finding contours with RETR_EXTERNAL flag and removing undesired contours and
# drawing them on a new image.
cnt, hie = cv2.findContours(th, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cntImg = th.copy()
for contour in cnt:
x, y, w, h = cv2.boundingRect(contour)
# Eliminating the contour if its width is more than half of image width
# (bacteria will not be that big).
if w > img.shape[1] / 2:
continue
cntImg = cv2.drawContours(cntImg, [cv2.convexHull(contour)], -1, 255, -1)
# Removing almost all the remaining noise.
# (Some big circular noise will remain along with bacteria contours)
cntImg = e_d(cntImg, 3)
# Finding new filtered contours again
cnt2, hie2 = cv2.findContours(cntImg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Now eliminating circular type noise contours by comparing each contour's
# extent of overlap with its enclosing circle.
finalContours = [] # This will contain the final bacteria contours
for contour in cnt2:
# Finding minimum enclosing circle
(x, y), radius = cv2.minEnclosingCircle(contour)
center = (int(x), int(y))
radius = int(radius)
# creating a image with only this circle drawn on it(filled with white colour)
circleImg = np.zeros(img.shape, dtype=np.uint8)
circleImg = cv2.circle(circleImg, center, radius, 255, -1)
# creating a image with only the contour drawn on it(filled with white colour)
contourImg = np.zeros(img.shape, dtype=np.uint8)
contourImg = cv2.drawContours(contourImg, [contour], -1, 255, -1)
# White pixels not common in both contour and circle will remain white
# else will become black.
union_inter = cv2.bitwise_xor(circleImg, contourImg)
# Finding ratio of the extent of overlap of contour to its enclosing circle.
# Smaller the ratio, more circular the contour.
ratio = np.sum(union_inter == 255) / np.sum(circleImg == 255)
# Storing only non circular contours(bacteria)
if ratio > 0.55:
finalContours.append(contour)
finalContours = np.asarray(finalContours)
# Finding center of bacteria and showing it.
bacteriaImg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
for bacteria in finalContours:
M = cv2.moments(bacteria)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
bacteriaImg = cv2.circle(bacteriaImg, (cx, cy), 5, (0, 0, 255), -1)
cv2.imshow("bacteriaImg", bacteriaImg)
cv2.waitKey(0)
# Segment Each Image
for i in range(len(img_files)):
segment_index(i)
Edit #1: Applying frmw42's approach, this image seems to get lost. I have tried adjusting a number of parameters but the image does not seem to show up.
Bright-Field Image #3
Bright-Field Image #4
Here is my Python/OpenCV code to extract your bacteria. I simply threshold, then get the contours and draw filled contours for those within a certain area range. I will let you do any further processing that you want. I simply viewed each step to make sure I have tuned the arguments appropriately before moving to the next step.
Input 1:
Input 2:
import cv2
import numpy as np
# read image
#img = cv2.imread("bacteria1.png")
img = cv2.imread("bacteria2.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255 - gray
# do adaptive threshold on inverted gray image
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 21, 5)
result = np.zeros_like(img)
contours = cv2.findContours(thresh , cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
area = cv2.contourArea(cntr)
if area > 600 and area < 1100:
cv2.drawContours(result, [cntr], 0, (255,255,255), -1)
# write results to disk
#cv2.imwrite("bacteria_filled_contours1.png", result)
cv2.imwrite("bacteria_filled_contours2.png", result)
# display it
cv2.imshow("thresh", thresh)
cv2.imshow("result", result)
cv2.waitKey(0)
Result 1:
Result 2:
Adjust as desired.
It would seem that adaptive threshold is not able to handle all your various images. I suspect nothing simple will. You may need to use AI with training. Nevertheless, this works for your images: 1, 2 and 4 in Python/OpenCV. I make no guarantee that it will work for any of your other images.
First I found a simple threshold that seems to work, but brings in other regions. So since all your bacteria have similar shapes and range of orientations, I fit and ellipse to your bacteria and get the orientation of the major axis and filter the contours with area and angle.
import cv2
import numpy as np
# read image
#img = cv2.imread("bacteria1.png")
#img = cv2.imread("bacteria2.png")
img = cv2.imread("bacteria4.png")
# convert img to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = 255 - gray
# median filter
#gray = cv2.medianBlur(gray, 1)
# do simple threshold on inverted gray image
thresh = cv2.threshold(gray, 170, 255, cv2.THRESH_BINARY)[1]
result = np.zeros_like(img)
contours = cv2.findContours(thresh , cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
for cntr in contours:
area = cv2.contourArea(cntr)
if area > 600 and area < 1100:
ellipse = cv2.fitEllipse(cntr)
(xc,yc),(d1,d2),angle = ellipse
if angle > 90:
angle = angle - 90
else:
angle = angle + 90
print(angle,area)
if angle >= 150 and angle <= 250:
cv2.drawContours(result, [cntr], 0, (255,255,255), -1)
# write results to disk
#cv2.imwrite("bacteria_filled_contours1.png", result)
#cv2.imwrite("bacteria_filled_contours2.png", result)
cv2.imwrite("bacteria_filled_contours4.png", result)
# display it
cv2.imshow("thresh", thresh)
cv2.imshow("result", result)
cv2.waitKey(0)
Result for image 1:
Result for image 2:
Result for image 4:
You might explore noise reduction before thresholding. I had some success with using some of ImageMagick tools and there is a Python version called Python Wand that uses ImageMagick.

cut out a specific part of an image with opencv in python

I have an image of an IC die and I want to cut out the marking in the center.The marking is always at this specific position above the circle at the bottom left.
The idea is to first find the circle position which I already accomplished with the hough circle transformation. Now I want to cut out the part where the marking is. It should ideally be a not a square or rectangle but something more like in the image:
This is a part of my code:
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
circles = cv2.HoughCircles(morph_image, cv2.HOUGH_GRADIENT, 1.3, 20, param1=50, param2=25, minRadius=15,
maxRadius=19)
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
# Zeichne äußeren Kreis
cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)
# Zeichne Kreiszentrum
cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)
# Tupel mit x- und y-Koordinaten des Kreiszentrums
circle_center = (i[0], i[1])
print('Die Koordinaten des Kreiszentrums lauten: ', circle_center)
"""cv2.imshow('Kreis', cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()"""
else:
circle_center = None
print('Kein Kreis gefunden')
"""cv2.imshow('Kein Kreis', cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()"""
so my cicle center has the center position of my circle (e.g. (124, 370)). How can I cut out this part of the image automatically? Can I somehow crop it out? Ideally I would want to crop the marking out into another image to inspect it separately but the normal cropping approach with marking_img = img[y:y+h, x:x+w] wouldn't work I guess.
EDIT:
Here is the original image:
The output should be like the first image and if it is possible something like this:
So in the end I would want to have 2 images: One image with just the die without the marking and one image with just the marking
Here is one way in Python/OpenCV.
Read the image
Read the mask (separately created one time from your other image)
Convert the mask to gray and threshold it to binary, invert it and make it 3 channels
Get the center of the circle from your own code. (I have just measured it manually)
Set the expected x,y offsets of the bottom of the region of text from the center of the circle
Compute the expected top left corner of the mask from the center of the circle, the offsets and the height of the mask image
Put the mask into black image the size of the input at that location
Apply the new mask to the image to make the rest of the image black
Crop out the region of interest from the top left corner and the size of the original mask
OPTIONALLY, crop the original image
Save the results
Input image:
Prepared mask image:
import cv2
import numpy as np
# read image
img = cv2.imread('die.jpg')
ht, wd, cc = img.shape
# read mask as grayscale
mask = cv2.imread('die_mask.png', cv2.IMREAD_GRAYSCALE)
# threshold mask and invert
mask = cv2.threshold(mask,0,255,cv2.THRESH_BINARY)[1]
mask = 255 - mask
hh, ww = mask.shape
# make mask 3 channel
mask = cv2.merge([mask,mask,mask])
# set circle center
cx = 62
cy = 336
# offsets from circle center to bottom of region
dx = -20
dy = -27
# compute top left corner of mask using size of mask and center and offsets
left = cx + dx
top = cy + dy - hh
# put mask into black background image
mask2 = np.zeros_like(img)
mask2[top:top+hh, left:left+ww] = mask
# apply mask to image
img_masked = cv2.bitwise_and(img, mask2)
# crop region
img_masked_cropped = img_masked[top:top+hh, left:left+ww]
# ALTERNATE just crop input
img_cropped = img[top:top+hh, left:left+ww]
cv2.imshow('image', img)
cv2.imshow('mask', mask)
cv2.imshow('mask2', mask2)
cv2.imshow('masked image', img_masked)
cv2.imshow('masked cropped image', img_masked_cropped)
cv2.imshow('cropped image', img_cropped)
cv2.waitKey(0)
cv2.destroyAllWindows()
# save results
cv2.imwrite('die_mask_inserted.jpg', mask2)
cv2.imwrite('die_masked_image.jpg', img_masked)
cv2.imwrite('die_masked_cropped.jpg', img_masked_cropped)
cv2.imwrite('die_cropped.jpg', img_cropped)
Mask inserted in black image:
Masked image:
Crop of masked image:
(Optional) Crop of input image:

Categories