Recursive successor function for a binary search tree (Python) - python

I'm trying to write a function that will find the smallest value in a binary search tree that is greater than some given x (i.e, the successor of x in the BST). The BST class I'm using is the following:
class BSTree:
class Node:
def __init__(self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right
def __init__(self):
self.size = 0
self.root = None
def add(self, val):
assert(val not in self)
def add_rec(node):
if not node:
return BSTree.Node(val)
elif val < node.val:
return BSTree.Node(node.val, left=add_rec(node.left), right=node.right)
else:
return BSTree.Node(node.val, left=node.left, right=add_rec(node.right))
self.root = add_rec(self.root)
self.size += 1
def height(self):
"""Returns the height of the longest branch of the tree."""
def height_rec(t):
if not t:
return 0
else:
return max(1+height_rec(t.left), 1+height_rec(t.right))
return height_rec(self.root)
def pprint(self, width=64):
"""Attempts to pretty-print this tree's contents."""
height = self.height()
nodes = [(self.root, 0)]
prev_level = 0
repr_str = ''
while nodes:
n,level = nodes.pop(0)
if prev_level != level:
prev_level = level
repr_str += '\n'
if not n:
if level < height-1:
nodes.extend([(None, level+1), (None, level+1)])
repr_str += '{val:^{width}}'.format(val='-', width=width//2**level)
elif n:
if n.left or level < height-1:
nodes.append((n.left, level+1))
if n.right or level < height-1:
nodes.append((n.right, level+1))
repr_str += '{val:^{width}}'.format(val=n.val, width=width//2**level)
print(repr_str)
I'm trying to write a recursive implementation for my own understanding of recursion, but I'm having some trouble. Here's what I have so far:
def successor(self, x):
def successor_rec(node):
if node is None:
return None
if x < node.val:
if node.left is not None and node.left.val > x:
return successor_rec(node.left)
else:
return node.val
else:
return successor_rec(node.right)
return successor_rec(self.root)
Consider the following BST:
t = BSTree()
for x in [6, 3, 5, 4, 7, 1, 2, 9, 8, 0]:
t.add(x)
t.pprint()
6
3 7
1 5 - 9
0 2 4 - - - 8 -
When I do t.successor(4) I get 6, though I wanted to get 5, the successor of 4 in the tree. I know the problem occurs in the part of the function else: return node.val, though I am struggling to remedy this.

Your if x < node.val block is not right. For instance, even when node.left.val < x, you should still go find the successor of node.left as it could have a right subtree (node.left.right).
Here is a correction:
if x < node.val:
attempt = successor_rec(node.left)
return node.val if attempt is None else attempt

Related

Trouble balancing a binary search tree using AVL

I'm unable to identify where I'm going wrong with my AVL implementation for balancing an existing binary search tree. I'm not getting any errors but my binary search tree does not come out to be properly balanced. After insertion, my binary search tree looks like (it would be prudent here to mention that my display_keys method gives us a visualization that is rotated by 90 degrees):
∅
The-Dreamers
∅
Saint-Laurent
∅
Pierrot-le-Fou
∅
Contempt
Cold-War
Before-Sunrise
∅
Basic-Instinct
∅
This is correct as it seems be to be following the rules for a BST.
But after calling the BalanceTree() method on my binary search tree, I seem to get:
∅
The-Dreamers
Saint-Laurent
Pierrot-le-Fou
Contempt
Cold-War
Before-Sunrise
Basic-Instinct
∅
which as you can see, is not Balanced. But wait, and here's the catch, if I call BalanceTree() again, the tree comes out to be perfectly balanced and isBSTBalanced returns True also. After the second call to BalanceTree(), our tree looks like:
∅
The-Dreamers
Saint-Laurent
Pierrot-le-Fou
Contempt
Cold-War
Before-Sunrise
Basic-Instinct
∅
I am adding the complete source code for my BST class for clarity and if somebody wants to execute the code, but I have added a comment (#Addition of new methods for AVL starts here) in the BST class to indicate where the methods for AVL start. You need only concern yourself with them. I would like for you help me pinpoint what exactly is going wrong in my code.
class BST:
class TreeNode:
def __init__(self, key, value, left=None, right=None, parent=None):
self.key = key
self.value = value
self.left = left
self.right = right
self.parent = parent
self.height = 1
def __init__(self):
self.root = None
self.size = 0
def __len__(self):
return self.size
def insert(self, key, value):
if self.root == None:
self.root = self.TreeNode(key, value)
else:
self._insert(key, value, self.root)
self.size += 1
def _insert(self, key, value, curr_node):
if key < curr_node.key:
if curr_node.left is not None:
self._insert(key, value, curr_node.left)
else:
curr_node.left = self.TreeNode(key, value, parent=curr_node)
elif key > curr_node.key:
if curr_node.right is not None:
self._insert(key, value, curr_node.right)
else:
curr_node.right = self.TreeNode(key, value, parent=curr_node)
def search(self, key):
if self.root:
found = self._search(key, self.root)
if found:
return found.value
else:
return None
else:
return None
def _search(self, key, curr_node):
if not curr_node:
return None
elif curr_node.key == key:
return curr_node
elif key < curr_node.key:
return self._search(key, curr_node.left)
else:
return self._search(key, curr_node.right)
def find_min(self):
curr = self.root
while curr.left is not None:
curr = curr.left
return curr
def find(self, node):
curr = node
while curr.left is not None:
curr = curr.left
return curr
def delete(self, key):
node_to_remove = self._search(key, self.root)
if node_to_remove.left is None and node_to_remove.right is None:
#Then we identify this as a leaf node
if node_to_remove is node_to_remove.parent.left:
#Setting the parent's reference to this to None
node_to_remove.parent.left = None
elif node_to_remove is node_to_remove.parent.right:
node_to_remove.parent.right = None
#2nd Case --> Two child
elif node_to_remove.left and node_to_remove.right:
minimum = self.find(node_to_remove.right)
self.delete(minimum.key) #We will still have a ref to this node afterwards
node_to_remove.key, node_to_remove.value = minimum.key, minimum.value
#3rd Case -> One child
else:
if node_to_remove.left:
node_to_remove.left.parent = node_to_remove.parent
node_to_remove.parent.left = node_to_remove.left
elif node_to_remove.right:
node_to_remove.right.parent = node_to_remove.parent
node_to_remove.parent.right = node_to_remove.right
def traversal(self, root):
res = []
if root:
res = self.traversal(root.left)
res.append(root)
res = res + self.traversal(root.right)
return res
def inorder_traversal(self, root):
if root:
self.inorder_traversal(root.left)
print(root.key)
self.inorder_traversal(root.right)
#Addition of new methods for AVL starts here
def display_keys(self, node, space='\t', level=0):
"""
Allows us to visualize the tree (albiet rotated by 90 degrees)
"""
# print(node.key if node else None, level)
# If the node is empty
if node is None:
print(space*level + '∅')
return
# If the node is a leaf
if node.left is None and node.right is None:
print(space*level + str(node.key))
return
# If the node has children
self.display_keys(node.right, space, level+1)
print(space*level + str(node.key))
self.display_keys(node.left,space, level+1)
def height(self):
return self._height(self.root)
def _height(self, curr_node):
if curr_node is None:
return -1 #since we are counting number of edges, we will return -1
else:
return 1 + max(self._height(curr_node.left), self._height(curr_node.right))
def isBSTBalanced(self):
return self._isBSTBalanced(self.root)
def _isBSTBalanced(self, curr_node):
if curr_node is None:
return True
hleft_subtree = self._height(curr_node.left)
hright_subtree = self._height(curr_node.right)
if hleft_subtree - hright_subtree in [-1,0,1]:
return self._isBSTBalanced(curr_node.left) and self._isBSTBalanced(curr_node.right)
else:
return False
def balance_factor(self):
if self.root is not None:
return self._balance_factor(self.root)
else:
return 0
def _balance_factor(self, curr_node):
if curr_node is None:
return
hleft_subtree = self._height(curr_node.left)
hright_subtree = self._height(curr_node.right)
b_factor = hleft_subtree - hright_subtree
return b_factor
def BalanceTree(self):
if self.isBSTBalanced() == False:
return self._rebalance(self.root)
def _rebalance(self, curr_node):
if curr_node is None:
return None
curr_node.left = self._rebalance(curr_node.left)
curr_node.right = self._rebalance(curr_node.right)
curr_node.height = 1 + max(self._height(curr_node.left), self._height(curr_node.right))
#print(curr_node.height)
if self._balance_factor(curr_node) > 1 and self._balance_factor(curr_node.left) >= 0:
#left heavy subtree
return self._rotate_right(curr_node)
if self._balance_factor(curr_node) < -1 and self._balance_factor(curr_node.right) <= 0:
#right heavy subtree
return self._rotate_left(curr_node)
if self._balance_factor(curr_node) < 0 and self._balance_factor(curr_node.right) > 0:
self._rotate_right(curr_node.right)
return self._rotate_left(curr_node)
if self._balance_factor(curr_node) > 0 and self._balance_factor(curr_node.left) < 0:
self._rotate_left(curr_node.left)
return self._rotate_right(curr_node)
return curr_node
def _rotate_left(self, oldRoot):
newRoot = oldRoot.right #the newRoot is the right child of the previous root
oldRoot.right = newRoot.left #replacing right child of the old root with the left child of the new
if newRoot.left is not None:
newRoot.left.parent = oldRoot
newRoot.parent = oldRoot.parent
if oldRoot == self.root:
self.root = newRoot
else:
if oldRoot.parent.left is oldRoot: #Checking isLeftChild
oldRoot.parent.left = newRoot
else:
oldRoot.parent.right = newRoot
newRoot.left = oldRoot
oldRoot.parent = newRoot
oldRoot.height = 1 + max(self._height(oldRoot.left), self._height(oldRoot.right))
newRoot.height = 1 + max(self._height(newRoot.left), self._height(newRoot.right))
return newRoot
def _rotate_right(self, oldRoot):
newRoot = oldRoot.left #the newRoot is the left child of the previous root
oldRoot.left = newRoot.right #replacing left child of the old root with the right child of the new
if newRoot.right is not None:
newRoot.right.parent = oldRoot
newRoot.parent = oldRoot.parent
if oldRoot == self.root:
self.root = newRoot
else:
if oldRoot.parent.right is oldRoot: #Checking isRightChild
oldRoot.parent.right = newRoot
else:
oldRoot.parent.left = newRoot
newRoot.right = oldRoot
oldRoot.parent = newRoot
oldRoot.height = 1 + max(self._height(oldRoot.left), self._height(oldRoot.right))
newRoot.height = 1 + max(self._height(newRoot.left), self._height(newRoot.right))
return newRoot
if __name__ == '__main__':
obj = BST()
obj.insert('Basic-Instinct', 0)
obj.insert('The-Dreamers', 1)
obj.insert('Saint-Laurent', 2)
obj.insert('Pierrot-le-Fou', 3)
obj.insert('Contempt', 4)
obj.insert('Before-Sunrise', 5)
obj.insert('Cold-War', 8)
obj.display_keys(obj.root) #displays a visual representation of our tree, albeit rotated by 90 degrees
print()
print("isBSTBalanced:", obj.isBSTBalanced())
obj.BalanceTree()
print("isBSTBalanced:", obj.isBSTBalanced()) #After executing BalanceTree(), isBSTBalanced still returns False
print()
obj.display_keys(obj.root)
Progress: Revamped _isBSTBalanced method so that it visits every node recursively and not just the root node. The final outcome, however, remains the same.
Progress: I was able to identify one of the major issues being that while I was calling _rotate_left and _rotate_right methods in the _rebalance method, I was not returning them. In addition to this, I was not recursively visiting the left and right subtrees of curr_node, which was initially set to the root of the tree, to be able to traverse the tree in a bottom up manner. I have resolved this too. I have added a display_keys method which allows us to visualize the tree, albeit rotated by 90 degrees. I'm updating the code and prompt in this post accordingly. The problem that still remains is that I have to call the BalanceTree() method more than once in some cases for isBSTBalanced to return True.

Trouble returning tuple in a recursive binary tree function

I am writing a function that recursively finds the minimum and maximum values in a binary tree and returns a tuple (min, max). My code is returning the correct min and max for my test case but separately. Any advice on how to get it to return a tuple is appreciated! (As a note, I am not allowed to use LinkedBinaryTree functions that iterate over the tree for me but I attached the class I am currently using under my code)
My code
from LinkedBinaryTree import LinkedBinaryTree
def min_and_max(bin_tree):
if bin_tree is None:
raise Exception("Tree is empty")
def subtree_min_and_max(root):
minval = root.data
maxval = root.data
if (root.left is None and root.right is None):
temp = (minval, maxval)
return temp
elif (root.left is None):
ltemp = subtree_min_and_max(root.right)
if (ltemp[0] < minval):
minval= ltemp[0]
if (ltemp[1] > maxval):
maxval = ltemp[1]
temp = (minval, maxval)
return temp
elif (root.right is None):
subtree_min_and_max(root.left)
rtemp = subtree_min_and_max(root.right)
if (rtemp[0] < minval):
minval = rtemp[0]
if (rtemp[1] > maxval):
maxval = rtemp[1]
temp = (minval, maxval)
return temp
else:
ltemp = subtree_min_and_max(root.left)
rtemp = subtree_min_and_max(root.right)
print((min(root.data, ltemp[0], rtemp[0])))
print(max(root.data, ltemp[1], rtemp[1]))
temp = (min(root.data, ltemp[0], rtemp[0]), max(root.data, ltemp[1], rtemp[1]))
return temp
return subtree_min_and_max(bin_tree.root)
LinkedBinaryTree class
from ArrayQueue import ArrayQueue
class LinkedBinaryTree:
class Node:
def __init__(self, data, left=None, right=None):
self.data = data
self.parent = None
self.left = left
if (self.left is not None):
self.left.parent = self
self.right = right
if (self.right is not None):
self.right.parent = self
def __init__(self, root=None):
self.root = root
self.size = self.count_nodes()
def __len__(self):
return self.size
def is_empty(self):
return len(self) == 0
def count_nodes(self):
def subtree_count(root):
if (root is None):
return 0
else:
left_count = subtree_count(root.left)
right_count = subtree_count(root.right)
return 1 + left_count + right_count
return subtree_count(self.root)
def sum(self):
def subtree_sum(root):
if (root is None):
return 0
else:
left_sum = subtree_sum(root.left)
right_sum = subtree_sum(root.right)
return root.data + left_sum + right_sum
return subtree_sum(self.root)
def height(self):
def subtree_height(root):
if (root.left is None and root.right is None):
return 0
elif (root.left is None):
return 1 + subtree_height(root.right)
elif (root.right is None):
return 1 + subtree_height(root.left)
else:
left_height = subtree_height(root.left)
right_height = subtree_height(root.right)
return 1 + max(left_height, right_height)
if(self.is_empty()):
raise Exception("Tree is empty")
return subtree_height(self.root)
def preorder(self):
def subtree_preorder(root):
if (root is None):
pass
else:
yield root
yield from subtree_preorder(root.left)
yield from subtree_preorder(root.right)
yield from subtree_preorder(self.root)
def postorder(self):
def subtree_postorder(root):
if (root is None):
pass
else:
yield from subtree_postorder(root.left)
yield from subtree_postorder(root.right)
yield root
yield from subtree_postorder(self.root)
def inorder(self):
def subtree_inorder(root):
if (root is None):
pass
else:
yield from subtree_inorder(root.left)
yield root
yield from subtree_inorder(root.right)
yield from subtree_inorder(self.root)
def breadth_first(self):
if (self.is_empty()):
return
line = ArrayQueue()
line.enqueue(self.root)
while (line.is_empty() == False):
curr_node = line.dequeue()
yield curr_node
if (curr_node.left is not None):
line.enqueue(curr_node.left)
if (curr_node.right is not None):
line.enqueue(curr_node.right)
def __iter__(self):
for node in self.breadth_first():
yield node.data
My tester code
root = LinkedBinaryTree.Node(3)
T = LinkedBinaryTree(root)
a = LinkedBinaryTree.Node(2)
a.parent = root
root.left = a
b = LinkedBinaryTree.Node(7)
b.parent = root
root.right = b
c = LinkedBinaryTree.Node(9)
c.parent = a
a.left = c
d = LinkedBinaryTree.Node(5)
d.parent = c
c.left = d
e = LinkedBinaryTree.Node(1)
e.parent = c
c.right = e
f = LinkedBinaryTree.Node(8)
f.parent = b
b.left = f
g = LinkedBinaryTree.Node(4)
g.parent = b
b.right = g
print(min_and_max(T))
The tester code makes a tree that looks like
In subtree_min_and_max, when the case root.right is None, your code do:
subtree_min_and_max(root.left)
rtemp = subtree_min_and_max(root.right)
Which should be a single
rtemp = subtree_min_and_max(root.left)
as at this time, the sub-tree has empty right children, and the procedure should search for min and max in the left children.

Nodes in Ascending Order

I have a class named Poly that takes in a list of tuples and converts them into polynomials... now I'm running into some issues in my insert function and can't figure out how to order the information ascending based on power
Current Output Based on Input:
>>> i = [(2,3),(2,1),(3,4),(2,3),(3,1)]
>>> p = Poly(i)
>>> print(p)
'4x^3 + 2x + 3x + 3x^4'
Expected Output:
>>> i = [(2,3),(2,1),(3,4),(2,3),(3,1)]
>>> p = Poly(i)
>>> print(p)
'5x + 4x^3 + 3x^4'
The solution must have the lowest powers on the left and the highest powers on the right. So in ascending order.
My Code:
class Poly:
class Node:
def __init__(self, coef, power, next):
self._coef = coef
self._power = power
self._next = next
def __init__(self, lst):
self._head = None
self._size = 0
for elem in lst:
self.insert(elem)
def insert(self, tup):
node = self.Node(tup[0], tup[1], None)
if node._coef == 0:
return
if self.isEmpty():
self._head = node
self._size += 1
return
if self._head._power == node._power:
self._head._coef += node._coef
self._size += 1
return
curr = self._head
while curr._next and node._power >= curr._next._power:
if node._power == curr._power:
curr._coef += node._coef
return
curr = curr._next
self._size += 1
node._next = curr._next
curr._next = node
Thanks in advance for any help!

How recursion keeps the function values in python?

I am on the way of learning data structures and facing a problem which is related with python and recursion.
I have a function (below - called update_BST) and in one version of the code doesn't keep the correct value from recursion.
I provide the two version of the code snippet.
Thanks
"""
Given a Binary Search Tree (BST),
modify it so that all greater values in
the given BST are added to every node.
For example, consider the following BST.
50
/ \\
30 70
/ \ / \\
20 40 60 80
The above tree should be modified to following
260
/ \\
330 150
/ \ / \\
350 300 210 80
"""
class Node:
def __init__(self, data):
self.data = data
self.right = None
self.left = None
def insert(self, data):
if self.data == data:
return False
elif self.data > data:
if self.left:
self.left.insert(data)
else:
self.left = Node(data)
else:
if self.right:
self.right.insert(data)
else:
self.right = Node(data)
def in_order(self):
if self:
if self.left:
self.left.in_order()
print(self.data)
if self.right:
self.right.in_order()
class BST:
def __init__(self):
self.root = None
def insert(self, data):
if self.root:
self.root.insert(data)
else:
self.root = Node(data)
return True
def in_order(self):
if self.root is not None:
self.root.in_order()
bst = BST()
arr = [50, 30, 20, 40, 70, 60, 80]
for i in arr:
bst.insert(i)
def update_BST(node, temp):
if node == None:
return
update_BST(node.right, temp)
temp[0] = temp[0] + node.data
node.data = temp[0]
update_BST(node.left, temp)
update_BST(bst.root, [0])
bst.in_order()
This codes works as it suppose to work. It gives back the right values.
BUT, I don't understand why it is not working if I use -- 0 -- instead of the -- [0] -- and of course modifying the reamining code like:
def update_BST(node, temp):
if node == None:
return
update_BST(node.right, temp)
temp = temp + node.data
node.data = temp
update_BST(node.left, temp)
update_BST(bst.root, 0)
So the question is why I need to use the [0] - why the simple integer 0 is not working?

Binary Search Tree - Finding the size

I want to find the size of the tree with a given node which will be stated like this
print bst.get("B")
However, when I tried to print out, it keeps stating that "it only accept 1 argument but 2 is given"
Sorry, can someone help me out, as I'm quite new to this.
the brief code is:
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size(temp.left) + self.size(temp.right)
def size2(self,n):
if n is None:
return 0
else:
return 1 + self.size2(n.left) + self.size2(n.right)
The full code:
import os
import pygraphviz as pgv
from collections import deque
class BST:
root=None
def put(self, key, val):
self.root = self.put2(self.root, key, val)
def put2(self, node, key, val):
if node is None:
#key is not in tree, create node and return node to parent
return Node(key, val)
if key < node.key:
# key is in left subtree
node.left = self.put2(node.left, key, val)
elif key > node.key:
# key is in right subtree
node.right = self.put2(node.right, key, val)
else:
node.val = val
# node.count = 1 + self.size2(node.left) + self.size2(node.right)
return node
# draw the graph
def drawTree(self, filename):
# create an empty undirected graph
G=pgv.AGraph('graph myGraph {}')
# create queue for breadth first search
q = deque([self.root])
# breadth first search traversal of the tree
while len(q) <> 0:
node = q.popleft()
G.add_node(node, label=node.key+":"+str(node.val))
if node.left is not None:
# draw the left node and edge
G.add_node(node.left, label=node.left.key+":"+str(node.left.val))
G.add_edge(node, node.left)
q.append(node.left)
if node.right is not None:
# draw the right node and edge
G.add_node(node.right, label=node.right.key+":"+str(node.right.val))
G.add_edge(node, node.right)
q.append(node.right)
# render graph into PNG file
G.draw(filename,prog='dot')
os.startfile(filename)
def createTree(self):
self.put("F",6)
self.put("D",4)
self.put("C",3)
self.put("B",2)
self.put("A",1)
self.put("E",5)
self.put("I",9)
self.put("G",7)
self.put("H",8)
self.put("J",10)
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size(temp.left) + self.size(temp.right)
def size2(self,n):
if n is None:
return 0
else:
return 1 + self.size2(n.left) + self.size2(n.right)
class Node:
left = None
right = None
key = 0
val = 0
def __init__(self, key, val):
self.key = key
self.val = val
bst = BST()
bst.createTree()
bst.drawTree("demo.png")
##print bst.size("D")
I get a stack overflow with your code. I think you need to use size2 in your size method:
def size(self,key):
temp = self.root
if (temp == 0):
return 0
return 1 + self.size2(temp.left) + self.size2(temp.right)
Personally, I would maybe not call the method size2, but that's a matter of taste (and style). Also, the key seems to be unused?

Categories