list index out of range loop Python - python

I am running a loop (more as a iteration process) with the purpose of calculating the cosine similarity of a pair of texts files a a data set with 84 texts files. The logic I follow is to calculate it first from the document 0 and 1, then document 1 and 2 until document n-1 and n. The way I coded it is the following:
my_funcs = {}
for i in range(len(data)):
def foo(x, y):
x = data[i]['body']
y = data[i+1]['body']
tfidf = vectorizer.fit_transform([x, y])
return ((tfidf * tfidf.T).A)[0,1]
foo.func_name = "cosine_sim%d" % i
my_funcs["cosine_sim%d" % i] = foo
globals().update(my_funcs) # Export to namespace
Not surprisingly my code gives me the following error: list index out of range. Is there any way to tell the loop to stop when i = len(data) ?

my_funcs = {}
for i in range(len(data)-1):
def foo(x, y):
x = data[i]['body']
y = data[i+1]['body']
tfidf = vectorizer.fit_transform([x, y])
return ((tfidf * tfidf.T).A)[0,1]
foo.func_name = "cosine_sim%d" % i
my_funcs["cosine_sim%d" % i] = foo
globals().update(my_funcs) # Export to namespace
I just made the loop to len(data)-1. Do you realize what changes it makes?
By the way, I don't agree with filling the globals() with so many functions. There are 84 of them. Unless you aren't using them for Python Shell use (for fast working), I would not suggest you to try this.

Related

How to speed up an N dimensional interval tree in python?

Consider the following problem: Given a set of n intervals and a set of m floating-point numbers, determine, for each floating-point number, the subset of intervals that contain the floating-point number.
This problem has been addressed by constructing an interval tree (or called range tree or segment tree). Implementations have been done for the one-dimensional case, e.g. python's intervaltree package. Usually, these implementations consider one or few floating-point numbers, namely a small "m" above.
In my problem setting, both n and m are extremely large numbers (from solving an image processing problem). Further, I need to consider the N-dimensional intervals (called cuboid when N=3, because I was modeling human brains with the Finite Element Method). I have implemented a simple N-dimensional interval tree in python, but it run in a loop and can only take one floating-point number at a time. Can anyone help improve the implementation in terms of efficiency? You can change data structure freely.
import sys
import time
import numpy as np
# find the index of a satisfying x > a in one dimension
def find_index_smaller(a, x):
idx = np.argsort(a)
ss = np.searchsorted(a, x, sorter=idx)
res = idx[0:ss]
return res
# find the index of a satisfying x < a in one dimension
def find_index_larger(a, x):
return find_index_smaller(-a, -x)
# find the index of a satisfing amin < x < amax in one dimension
def find_intv_at(amin, amax, x):
idx = find_index_smaller(amin, x)
idx2 = find_index_larger(amax[idx], x)
res = idx[idx2]
return res
# find the index of a satisfying amin < x < amax in N dimensions
def find_intv_at_nd(amin, amax, x):
dim = amin.shape[0]
res = np.arange(amin.shape[-1])
for i in range(dim):
idx = find_intv_at(amin[i, res], amax[i, res], x[i])
res = res[idx]
return res
I also have two test examples for sanity check and performance testing:
def demo1():
print ("By default, we do a correctness test")
n_intv = 2
n_point = 2
# generate the test data
point = np.random.rand(3, n_point)
intv_min = np.random.rand(3, n_intv)
intv_max = intv_min + np.random.rand(3, n_intv)*8
print ("point ")
print (point)
print ("intv_min")
print (intv_min)
print ("intv_max")
print (intv_max)
print ("===Indexes of intervals that contain the point===")
for i in range(n_point):
print (find_intv_at_nd(intv_min,intv_max, point[:, i]))
def demo2():
print ("Performance:")
n_points=100
n_intv = 1000000
# generate the test data
points = np.random.rand(n_points, 3)*512
intv_min = np.random.rand(3, n_intv)*512
intv_max = intv_min + np.random.rand(3, n_intv)*8
print ("point.shape = "+str(points.shape))
print ("intv_min.shape = "+str(intv_min.shape))
print ("intv_max.shape = "+str(intv_max.shape))
starttime = time.time()
for point in points:
tmp = find_intv_at_nd(intv_min, intv_max, point)
print("it took this long to run {} points, with {} interva: {}".format(n_points, n_intv, time.time()-starttime))
My idea would be:
Remove np.argsort() from the algo, because the interval tree does not change, so sorting could have been done in pre-processing.
Vectorize x. The algo runs a loop for each x. It would be nice if we can get rid of the loop over x.
Any contribution would be appreciated.

Why is Z3 slow for tiny search space?

I'm trying to make a Z3 program (in Python) that generates boolean circuits that do certain tasks (e.g. adding two n-bit numbers) but the performance is terrible to the point where a brute-force search of the entire solution space would be faster. This is my first time using Z3 so I could be doing something that impacts my performance, but my code seems fine.
The following is copied from my code here:
from z3 import *
BITLEN = 1 # Number of bits in input
STEPS = 1 # How many steps to take (e.g. time)
WIDTH = 2 # How many operations/values can be stored in parallel, has to be at least BITLEN * #inputs
# Input variables
x = BitVec('x', BITLEN)
y = BitVec('y', BITLEN)
# Define operations used
op_list = [BitVecRef.__and__, BitVecRef.__or__, BitVecRef.__xor__, BitVecRef.__xor__]
unary_op_list = [BitVecRef.__invert__]
for uop in unary_op_list:
op_list.append(lambda x, y : uop(x))
# Chooses a function to use by setting all others to 0
def chooseFunc(i, x, y):
res = 0
for ind, op in enumerate(op_list):
res = res + (ind == i) * op(x, y)
return res
s = Solver()
steps = []
# First step is just the bits of the input padded with constants
firststep = Array("firststep", IntSort(), BitVecSort(1))
for i in range(BITLEN):
firststep = Store(firststep, i * 2, Extract(i, i, x))
firststep = Store(firststep, i * 2 + 1, Extract(i, i, y))
for i in range(BITLEN * 2, WIDTH):
firststep = Store(firststep, i, BitVec("const_0_%d" % i, 1))
steps.append(firststep)
# Generate remaining steps
for i in range(1, STEPS + 1):
this_step = Array("step_%d" % i, IntSort(), BitVecSort(1))
last_step = steps[-1]
for j in range(WIDTH):
func_ind = Int("func_%d_%d" % (i,j))
s.add(func_ind >= 0, func_ind < len(op_list))
x_ind = Int("x_%d_%d" % (i,j))
s.add(x_ind >= 0, x_ind < WIDTH)
y_ind = Int("y_%d_%d" % (i,j))
s.add(y_ind >= 0, y_ind < WIDTH)
node = chooseFunc(func_ind, Select(last_step, x_ind), Select(last_step, y_ind))
this_step = Store(this_step, j, node)
steps.append(this_step)
# Set the result to the first BITLEN bits of the last step
if BITLEN == 1:
result = Select(steps[-1], 0)
else:
result = Concat(*[Select(steps[-1], i) for i in range(BITLEN)])
# Set goal
goal = x | y
s.add(ForAll([x, y], goal == result))
print(s)
print(s.check())
print(s.model())
The code basically lays out the inputs as individual bits, then at each "step" one of 5 boolean functions can operate on the values from the previous step, where the final step represents the end result.
In this example, I generate a circuit to calculate the boolean OR of two 1-bit inputs, and an OR function is available in the circuit, so the solution is trivial.
I have a solution space of only 5*5*2*2*2*2=400:
5 Possible functions (two function nodes)
2 Inputs for each function, each of which has two possible values
This code takes a few seconds to run and provides a correct answer, but I feel like it should run instantaneously as there are only 400 possible solutions, of which quite a few are valid. If I increase the inputs to be two bits long, the solution space has a size of (5^4)*(4^8)=40,960,000 and never finishes on my computer, though I feel this should be easily doable with Z3.
I also tried effectively the same code but substituted Arrays/Store/Select for Python lists and "selected" the variables by using the same trick I used in chooseFunc(). The code is here and it runs in around the same time the original code does, so no speedup.
Am I doing something that would drastically slow down the solver? Thanks!
You have a duplicated __xor__ in your op_list; but that's not really the major problem. The slowdown is inevitable as you increase bit-size, but on a first look you can (and should) avoid mixing integer reasoning with booleans here. I'd code your chooseFunc as follows:
def chooseFunc(i, x, y):
res = False;
for ind, op in enumerate(op_list):
res = If(ind == i, op (x, y), res)
return res
See if that improves run-times in any meaningful way. If not, the next thing to do would be to get rid of arrays as much as possible.

How do you use a list as an index argument for numpy ndarrays?

So I have a problem that might be super duper simple.
I have these numpy ndarrays that I allocated and want to assign values to them via indices returned as lists. It might be easier if I showed you some example code. The questionable code I have is at the bottom, and in my testing (before actually taking this to scale) I keep getting syntax errors :'(
EDIT: edited to make it easier to troubleshoot and put some example code at the bottoms
import numpy as np
def do_stuff(index, mask):
# this is where the calculations are made
magic = sum(mask)
return index, magic
def foo(full_index, comparison_dims, *xargs):
# I have this function executed in Parallel since I'm using a machine with 36 nodes per core, and can access upto 16 cores for each script #blessed
# figure out how many dimensions there are, and how big they are
parent_dims = []
parent_diffs = []
for j in xargs:
parent_dims += [len(j)]
parent_diffs += [j[1] - j[0]] # this is used to find a mask
index = [] # this is where the individual dimension indices will be stored
dim_n = 0
# loop through the dimensions
while dim_n < len(parent_dims):
dim_index = full_index % parent_dims[dim_n]
index += [dim_index]
if dim_n == 0:
mask = (comparison_dims[dim_n] > xargs[dim_n][dim_index] - parent_diffs[dim_n]/2) * \
(comparison_dims[dim_n] <= xargs[dim_n][dim_index] +parent_diffs[dim_n] / 2)
else:
mask *= (comparison_dims[dim_n] > xargs[dim_n][dim_index] - parent_diffs[dim_n]/2) * \
(comparison_dims[dim_n] <=xargs[dim_n][dim_index] + parent_diffs[dim_n] / 2)
full_index //= parent_dims[dim_n]
dim_n += 1
return do_stuff(index, mask)
def bar(comparison_dims, *xargs):
if len(xargs) == comparison_dims.shape[0]:
pass
elif len(comparison_dims.shape) == 2:
pass
else:
raise ValueError("silly person, you failed")
from joblib import Parallel, delayed
dims = []
for j in xargs:
dims += [len(j)]
myArray = np.empty(tuple(dims))
results = Parallel(n_jobs=1)(
delayed(foo)(
index, comparison_dims, *xargs)
for index in range(np.prod(dims))
)
# LOOK HERE, HELP HERE!
for index_list, result in results:
# I thought this would work, but oh golly was I was wrong, index_list here is a list of ints, and result is a value
# for example index, result = [0,3,7], 45.4
# so in execution, that would yield: myArray[0,3,7] = 45.4
# instead it yields SyntaxError because I don't know what I'm doing XD
myArray[*index_list] = result
return myArray
Any ideas how I can make that work. What do I need to do?
I'm not the sharpest tool in the shed, but I think with your help we might be able to figure this out!
A quick example to troubleshoot this problem would be:
compareDims = np.array([np.random.rand(1000), np.random.rand(1000)])
dim0 = np.arange(0,1,1./20)
dim1 = np.arange(0,1,1./30)
myArray = bar(compareDims, dim0, dim1)
To index a numpy array with an arbitrary list of multidimensional indices. you actually need to use a tuple:
for index_list, result in results:
myArray[tuple(index_list)] = result

Parallel Processing - Pool - Python

I'm trying to learn how to use multiprocessing in Python.
I read about multiprocessing, and I trying to do something like this:
I have the following class(partial code), which has a method to produce voronoi diagrams:
class ImageData:
def generate_voronoi_diagram(self, seeds):
"""
Generate a voronoi diagram with *seeds* seeds
:param seeds: the number of seed in the voronoi diagram
"""
nx = []
ny = []
gs = []
for i in range(seeds):
# Generate a cell position
pos_x = random.randrange(self.width)
pos_y = random.randrange(self.height)
nx.append(pos_x)
ny.append(pos_y)
# Save the f(x,y) data
x = Utils.translate(pos_x, 0, self.width, self.range_min, self.range_max)
y = Utils.translate(pos_y, 0, self.height, self.range_min, self.range_max)
z = Utils.function(x, y)
gs.append(z)
for y in range(self.height):
for x in range(self.width):
# Return the Euclidean norm
d_min = math.hypot(self.width - 1, self.height - 1)
j = -1
for i in range(seeds):
# The distance from a cell to x, y point being considered
d = math.hypot(nx[i] - x, ny[i] - y)
if d < d_min:
d_min = d
j = i
self.data[x][y] = gs[j]
I have to generate a large number of this diagrams, so, this consumes a lot of time, so I thought this is a typical problem to be parallelized.
I was doing this, in the "normal" approach, like this:
if __name__ == "__main__":
entries = []
for n in range(images):
entry = ImD.ImageData(width, height)
entry.generate_voronoi_diagram(seeds)
entry.generate_heat_map_image("ImagesOutput/Entries/Entry"+str(n))
entries.append(entry)
Trying to parallelize this, I tried this:
if __name__ == "__main__":
entries = []
seeds = np.random.poisson(100)
p = Pool()
entry = ImD.ImageData(width, height)
res = p.apply_async(entry.generate_voronoi_diagram,(seeds))
entries.append(entry)
entry.generate_heat_map_image("ImagesOutput/Entries/EntryX")
But, besides it doesn't work not even to generate a single diagram, I don't know how to specify that this have to be made N times.
Any help would be very appreciated.
Thanks.
Python's multiprocessing doesn't share memory (unless you explicitly tell it to). That means that you won't see "side effects" of any function that gets run in a worker processes. Your generate_voronoi_diagram method works by adding data to an entry value, which is a side effect. In order to see the results, you need to be passing it back as a return values from your function.
Here's one approach that handles the entry instance as an argument and return value:
def do_voroni(entry, seeds):
entry.generate_voronoi_diagram(seeds)
return entry
Now, you can use this function in your worker processes:
if __name__ == "__main__":
entries = [ImD.ImageData(width, height) for _ in range(images)]
seeds = numpy.random.poisson(100, images) # array of values
pool = multiprocessing.Pool()
for i, e in enumerate(pool.starmap_async(do_voroni, zip(entries, seeds))):
e.generate_heat_map_image("ImagesOutput/Entries/Entry{:02d}".format(i))
The e values in the loop are not references to the values in the entries list. Rather, they're copies of those objects, which have been passed out to the worker process (which added data to them) and then passed back.
I might be wrong, but I think you should use
res = p.apply_async(entry.generate_voronoi_diagram,(seeds))
res.get(timeout=1)
you may get Can't pickle type 'instancemethod'
i think the easiest way is something like
import random
from multiprocessing import Pool
class ImageData:
def generate_voronoi_diagram(self, seeds):
ooxx
def generate_heat_map_image(self, path):
ooxx
def allinone(obj, seeds, path):
obj.generate_voronoi_diagram(seeds)
obj.generate_heat_map_image(path)
if __name__ == "__main__":
entries = []
seeds = random.random()
p = Pool()
entry = ImageData()
res = p.apply_async(allinone, (entry, seeds, 'tmp.txt'))
res.get(timeout=1)

Quickly counting particles in grid

I've written some python code to calculate a certain quantity from a cosmological simulation. It does this by checking whether a particle in contained within a box of size 8,000^3, starting at the origin and advancing the box when all particles contained within it are found. As I am counting ~2 million particles altogether, and the total size of the simulation volume is 150,000^3, this is taking a long time.
I'll post my code below, does anybody have any suggestions on how to improve it?
Thanks in advance.
from __future__ import division
import numpy as np
def check_range(pos, i, j, k):
a = 0
if i <= pos[2] < i+8000:
if j <= pos[3] < j+8000:
if k <= pos[4] < k+8000:
a = 1
return a
def sigma8(data):
N = []
to_do = data
print 'Counting number of particles per cell...'
for k in range(0,150001,8000):
for j in range(0,150001,8000):
for i in range(0,150001,8000):
temp = []
n = []
for count in range(len(to_do)):
n.append(check_range(to_do[count],i,j,k))
to_do[count][1] = n[count]
if to_do[count][1] == 0:
temp.append(to_do[count])
#Only particles that have not been found are
# searched for again
to_do = temp
N.append(sum(n))
print 'Next row'
print 'Next slice, %i still to find' % len(to_do)
print 'Calculating sigma8...'
if not sum(N) == len(data):
return 'Error!\nN measured = {0}, total N = {1}'.format(sum(N), len(data))
else:
return 'sigma8 = %.4f, variance = %.4f, mean = %.4f' % (np.sqrt(sum((N-np.mean(N))**2)/len(N))/np.mean(N), np.var(N),np.mean(N))
I'll try to post some code, but my general idea is the following: create a Particle class that knows about the box that it lives in, which is calculated in the __init__. Each box should have a unique name, which might be the coordinate of the bottom left corner (or whatever you use to locate your boxes).
Get a new instance of the Particle class for each particle, then use a Counter (from the collections module).
Particle class looks something like:
# static consts - outside so that every instance of Particle doesn't take them along
# for the ride...
MAX_X = 150,000
X_STEP = 8000
# etc.
class Particle(object):
def __init__(self, data):
self.x = data[xvalue]
self.y = data[yvalue]
self.z = data[zvalue]
self.compute_box_label()
def compute_box_label(self):
import math
x_label = math.floor(self.x / X_STEP)
y_label = math.floor(self.y / Y_STEP)
z_label = math.floor(self.z / Z_STEP)
self.box_label = str(x_label) + '-' + str(y_label) + '-' + str(z_label)
Anyway, I imagine your sigma8 function might look like:
def sigma8(data):
import collections as col
particles = [Particle(x) for x in data]
boxes = col.Counter([x.box_label for x in particles])
counts = boxes.most_common()
#some other stuff
counts will be a list of tuples which map a box label to the number of particles in that box. (Here we're treating particles as indistinguishable.)
Using list comprehensions is much faster than using loops---I think the reason is that you're basically relying more on the underlying C, but I'm not the person to ask. Counter is (supposedly) highly-optimized as well.
Note: None of this code has been tested, so you shouldn't try the cut-and-paste-and-hope-it-works method here.

Categories